Online Orthogonal Matching Pursuit
- URL: http://arxiv.org/abs/2011.11117v2
- Date: Wed, 10 Feb 2021 12:44:51 GMT
- Title: Online Orthogonal Matching Pursuit
- Authors: El Mehdi Saad, Gilles Blanchard, Sylvain Arlot
- Abstract summary: We present a novel online algorithm: Online Orthogonal Matching Pursuit (OOMP) for online support recovery in the random design setting of sparse linear regression.
Our procedure selects features sequentially, alternating between allocation of samples only as needed to candidate features, and optimization over the selected set of variables to estimate the regression coefficients.
- Score: 6.6389732792316005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Greedy algorithms for feature selection are widely used for recovering sparse
high-dimensional vectors in linear models. In classical procedures, the main
emphasis was put on the sample complexity, with little or no consideration of
the computation resources required. We present a novel online algorithm: Online
Orthogonal Matching Pursuit (OOMP) for online support recovery in the random
design setting of sparse linear regression. Our procedure selects features
sequentially, alternating between allocation of samples only as needed to
candidate features, and optimization over the selected set of variables to
estimate the regression coefficients. Theoretical guarantees about the output
of this algorithm are proven and its computational complexity is analysed.
Related papers
- Precise asymptotics of reweighted least-squares algorithms for linear diagonal networks [15.074950361970194]
We provide a unified analysis for a family of algorithms that encompasses IRLS, the recently proposed linlin-RFM algorithm, and the alternating diagonal neural networks.
We show that, with appropriately chosen reweighting policy, a handful of sparse structures can achieve favorable performance.
We also show that leveraging this in the reweighting scheme provably improves test error compared to coordinate-wise reweighting.
arXiv Detail & Related papers (2024-06-04T20:37:17Z) - On Sample-Efficient Offline Reinforcement Learning: Data Diversity,
Posterior Sampling, and Beyond [29.449446595110643]
We propose a notion of data diversity that subsumes the previous notions of coverage measures in offline RL.
Our proposed model-free PS-based algorithm for offline RL is novel, with sub-optimality bounds that are frequentist (i.e., worst-case) in nature.
arXiv Detail & Related papers (2024-01-06T20:52:04Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
We propose an efficient online approximate Bayesian inference algorithm for estimating the parameters of a nonlinear function from a potentially non-stationary data stream.
The method is based on the extended Kalman filter (EKF), but uses a novel low-rank plus diagonal decomposition of the posterior matrix.
In contrast to methods based on variational inference, our method is fully deterministic, and does not require step-size tuning.
arXiv Detail & Related papers (2023-05-31T03:48:49Z) - Deterministic Online Classification: Non-iteratively Reweighted
Recursive Least-Squares for Binary Class Rebalancing [1.370633147306388]
Weighted Least-Squares (WLS) has been widely used as a deterministic batch solution with a specific weight design.
We introduce a new deterministic online classification algorithm of WLS with a constant time complexity for binary class rebalancing.
We demonstrate that our proposed online formulation exactly converges to its batch formulation and outperforms existing state-of-the-art online binary classification algorithms.
arXiv Detail & Related papers (2023-01-22T23:44:18Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
Algorithm unfolding creates an interpretable and parsimonious neural network architecture by implementing each iteration of a model-based algorithm as a neural layer.
In this paper, leveraging a recent linear algebraic theorem called Gershgorin disc perfect alignment (GDPA), we unroll a projection-free algorithm for semi-definite programming relaxation (SDR) of a binary graph.
Experimental results show that our unrolled network outperformed pure model-based graph classifiers, and achieved comparable performance to pure data-driven networks but using far fewer parameters.
arXiv Detail & Related papers (2021-09-10T07:01:15Z) - Optimal Rates for Random Order Online Optimization [60.011653053877126]
We study the citetgarber 2020online, where the loss functions may be chosen by an adversary, but are then presented online in a uniformly random order.
We show that citetgarber 2020online algorithms achieve the optimal bounds and significantly improve their stability.
arXiv Detail & Related papers (2021-06-29T09:48:46Z) - Linear regression with partially mismatched data: local search with
theoretical guarantees [9.398989897176953]
We study an important variant of linear regression in which the predictor-response pairs are partially mismatched.
We use an optimization formulation to simultaneously learn the underlying regression coefficients and the permutation corresponding to the mismatches.
We prove that our local search algorithm converges to a nearly-optimal solution at a linear rate.
arXiv Detail & Related papers (2021-06-03T23:32:12Z) - Piecewise linear regression and classification [0.20305676256390928]
This paper proposes a method for solving multivariate regression and classification problems using piecewise linear predictors.
A Python implementation of the algorithm described in this paper is available at http://cse.lab.imtlucca.it/bemporad/parc.
arXiv Detail & Related papers (2021-03-10T17:07:57Z) - Online Model Selection for Reinforcement Learning with Function
Approximation [50.008542459050155]
We present a meta-algorithm that adapts to the optimal complexity with $tildeO(L5/6 T2/3)$ regret.
We also show that the meta-algorithm automatically admits significantly improved instance-dependent regret bounds.
arXiv Detail & Related papers (2020-11-19T10:00:54Z) - Activation Relaxation: A Local Dynamical Approximation to
Backpropagation in the Brain [62.997667081978825]
Activation Relaxation (AR) is motivated by constructing the backpropagation gradient as the equilibrium point of a dynamical system.
Our algorithm converges rapidly and robustly to the correct backpropagation gradients, requires only a single type of computational unit, and can operate on arbitrary computation graphs.
arXiv Detail & Related papers (2020-09-11T11:56:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.