CoMatch: Semi-supervised Learning with Contrastive Graph Regularization
- URL: http://arxiv.org/abs/2011.11183v2
- Date: Wed, 3 Mar 2021 01:58:15 GMT
- Title: CoMatch: Semi-supervised Learning with Contrastive Graph Regularization
- Authors: Junnan Li, Caiming Xiong, Steven Hoi
- Abstract summary: CoMatch is a new semi-supervised learning method that unifies dominant approaches.
It achieves state-of-the-art performance on multiple datasets.
- Score: 86.84486065798735
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised learning has been an effective paradigm for leveraging
unlabeled data to reduce the reliance on labeled data. We propose CoMatch, a
new semi-supervised learning method that unifies dominant approaches and
addresses their limitations. CoMatch jointly learns two representations of the
training data, their class probabilities and low-dimensional embeddings. The
two representations interact with each other to jointly evolve. The embeddings
impose a smoothness constraint on the class probabilities to improve the
pseudo-labels, whereas the pseudo-labels regularize the structure of the
embeddings through graph-based contrastive learning. CoMatch achieves
state-of-the-art performance on multiple datasets. It achieves substantial
accuracy improvements on the label-scarce CIFAR-10 and STL-10. On ImageNet with
1% labels, CoMatch achieves a top-1 accuracy of 66.0%, outperforming FixMatch
by 12.6%. Furthermore, CoMatch achieves better representation learning
performance on downstream tasks, outperforming both supervised learning and
self-supervised learning. Code and pre-trained models are available at
https://github.com/salesforce/CoMatch.
Related papers
- DualMatch: Robust Semi-Supervised Learning with Dual-Level Interaction [10.775623936099173]
Previous semi-supervised learning methods typically match model predictions of different data-augmented views in a single-level interaction manner.
We propose a novel SSL method called DualMatch, in which the class prediction jointly invokes feature embedding in a dual-level interaction manner.
In the standard SSL setting, the proposal achieves 9% error reduction compared with SOTA methods, even in a more challenging class-imbalanced setting, the proposal can still achieve 6% error reduction.
arXiv Detail & Related papers (2023-10-25T08:34:05Z) - JointMatch: A Unified Approach for Diverse and Collaborative
Pseudo-Labeling to Semi-Supervised Text Classification [65.268245109828]
Semi-supervised text classification (SSTC) has gained increasing attention due to its ability to leverage unlabeled data.
Existing approaches based on pseudo-labeling suffer from the issues of pseudo-label bias and error accumulation.
We propose JointMatch, a holistic approach for SSTC that addresses these challenges by unifying ideas from recent semi-supervised learning.
arXiv Detail & Related papers (2023-10-23T05:43:35Z) - Boosting Semi-Supervised Learning by Exploiting All Unlabeled Data [21.6350640726058]
Semi-supervised learning (SSL) has attracted enormous attention due to its vast potential of mitigating the dependence on large labeled datasets.
We propose two novel techniques: Entropy Meaning Loss (EML) and Adaptive Negative Learning (ANL)
We integrate these techniques with FixMatch, and develop a simple yet powerful framework called FullMatch.
arXiv Detail & Related papers (2023-03-20T12:44:11Z) - Dense FixMatch: a simple semi-supervised learning method for pixel-wise
prediction tasks [68.36996813591425]
We propose Dense FixMatch, a simple method for online semi-supervised learning of dense and structured prediction tasks.
We enable the application of FixMatch in semi-supervised learning problems beyond image classification by adding a matching operation on the pseudo-labels.
Dense FixMatch significantly improves results compared to supervised learning using only labeled data, approaching its performance with 1/4 of the labeled samples.
arXiv Detail & Related papers (2022-10-18T15:02:51Z) - FreeMatch: Self-adaptive Thresholding for Semi-supervised Learning [46.95063831057502]
We propose emphFreeMatch to define and adjust the confidence threshold in a self-adaptive manner according to the model's learning status.
FreeMatch achieves textbf5.78%, textbf13.59%, and textbf1.28% error rate reduction over the latest state-of-the-art method FlexMatch on CIFAR-10 with 1 label per class.
arXiv Detail & Related papers (2022-05-15T10:07:52Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
We propose two methods to improve calibration and performance in such scenarios.
For dataset bias due to different samplers, we propose shifted batch normalization.
Our proposed methods set new records on multiple popular long-tailed recognition benchmark datasets.
arXiv Detail & Related papers (2021-04-01T13:55:21Z) - SimPLE: Similar Pseudo Label Exploitation for Semi-Supervised
Classification [24.386165255835063]
A common classification task situation is where one has a large amount of data available for training, but only a small portion is with class labels.
The goal of semi-supervised training, in this context, is to improve classification accuracy by leverage information from a large amount of unlabeled data.
We propose a novel unsupervised objective that focuses on the less studied relationship between the high confidence unlabeled data that are similar to each other.
Our proposed SimPLE algorithm shows significant performance gains over previous algorithms on CIFAR-100 and Mini-ImageNet, and is on par with the state-of-the-art methods
arXiv Detail & Related papers (2021-03-30T23:48:06Z) - i-Mix: A Domain-Agnostic Strategy for Contrastive Representation
Learning [117.63815437385321]
We propose i-Mix, a simple yet effective domain-agnostic regularization strategy for improving contrastive representation learning.
In experiments, we demonstrate that i-Mix consistently improves the quality of learned representations across domains.
arXiv Detail & Related papers (2020-10-17T23:32:26Z) - FixMatch: Simplifying Semi-Supervised Learning with Consistency and
Confidence [93.91751021370638]
Semi-supervised learning (SSL) provides an effective means of leveraging unlabeled data to improve a model's performance.
In this paper, we demonstrate the power of a simple combination of two common SSL methods: consistency regularization and pseudo-labeling.
Our algorithm, FixMatch, first generates pseudo-labels using the model's predictions on weakly-augmented unlabeled images.
arXiv Detail & Related papers (2020-01-21T18:32:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.