3D Registration for Self-Occluded Objects in Context
- URL: http://arxiv.org/abs/2011.11260v1
- Date: Mon, 23 Nov 2020 08:05:28 GMT
- Title: 3D Registration for Self-Occluded Objects in Context
- Authors: Zheng Dang and Fei Wang and Mathieu Salzmann
- Abstract summary: We introduce the first deep learning framework capable of effectively handling this scenario.
Our method consists of an instance segmentation module followed by a pose estimation one.
It allows us to perform 3D registration in a one-shot manner, without requiring an expensive iterative procedure.
- Score: 66.41922513553367
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While much progress has been made on the task of 3D point cloud registration,
there still exists no learning-based method able to estimate the 6D pose of an
object observed by a 2.5D sensor in a scene. The challenges of this scenario
include the fact that most measurements are outliers depicting the object's
surrounding context, and the mismatch between the complete 3D object model and
its self-occluded observations.
We introduce the first deep learning framework capable of effectively
handling this scenario. Our method consists of an instance segmentation module
followed by a pose estimation one. It allows us to perform 3D registration in a
one-shot manner, without requiring an expensive iterative procedure. We further
develop an on-the-fly rendering-based training strategy that is both time- and
memory-efficient. Our experiments evidence the superiority of our approach over
the state-of-the-art traditional and learning-based 3D registration methods.
Related papers
- FSD: Fast Self-Supervised Single RGB-D to Categorical 3D Objects [37.175069234979645]
This work addresses the challenging task of 3D object recognition without the reliance on real-world 3D labeled data.
Our goal is to predict the 3D shape, size, and 6D pose of objects within a single RGB-D image, operating at the category level and eliminating the need for CAD models during inference.
arXiv Detail & Related papers (2023-10-19T17:59:09Z) - Pseudo Flow Consistency for Self-Supervised 6D Object Pose Estimation [14.469317161361202]
We propose a 6D object pose estimation method that can be trained with pure RGB images without any auxiliary information.
We evaluate our method on three challenging datasets and demonstrate that it outperforms state-of-the-art self-supervised methods significantly.
arXiv Detail & Related papers (2023-08-19T13:52:18Z) - Self-Supervised Geometric Correspondence for Category-Level 6D Object
Pose Estimation in the Wild [47.80637472803838]
We introduce a self-supervised learning approach trained directly on large-scale real-world object videos for category-level 6D pose estimation in the wild.
Our framework reconstructs the canonical 3D shape of an object category and learns dense correspondences between input images and the canonical shape via surface embedding.
Surprisingly, our method, without any human annotations or simulators, can achieve on-par or even better performance than previous supervised or semi-supervised methods on in-the-wild images.
arXiv Detail & Related papers (2022-10-13T17:19:22Z) - Unseen Object 6D Pose Estimation: A Benchmark and Baselines [62.8809734237213]
We propose a new task that enables and facilitates algorithms to estimate the 6D pose estimation of novel objects during testing.
We collect a dataset with both real and synthetic images and up to 48 unseen objects in the test set.
By training an end-to-end 3D correspondences network, our method finds corresponding points between an unseen object and a partial view RGBD image accurately and efficiently.
arXiv Detail & Related papers (2022-06-23T16:29:53Z) - Learning-based Point Cloud Registration for 6D Object Pose Estimation in
the Real World [55.7340077183072]
We tackle the task of estimating the 6D pose of an object from point cloud data.
Recent learning-based approaches to addressing this task have shown great success on synthetic datasets.
We analyze the causes of these failures, which we trace back to the difference between the feature distributions of the source and target point clouds.
arXiv Detail & Related papers (2022-03-29T07:55:04Z) - Learning Stereopsis from Geometric Synthesis for 6D Object Pose
Estimation [11.999630902627864]
Current monocular-based 6D object pose estimation methods generally achieve less competitive results than RGBD-based methods.
This paper proposes a 3D geometric volume based pose estimation method with a short baseline two-view setting.
Experiments show that our method outperforms state-of-the-art monocular-based methods, and is robust in different objects and scenes.
arXiv Detail & Related papers (2021-09-25T02:55:05Z) - RandomRooms: Unsupervised Pre-training from Synthetic Shapes and
Randomized Layouts for 3D Object Detection [138.2892824662943]
A promising solution is to make better use of the synthetic dataset, which consists of CAD object models, to boost the learning on real datasets.
Recent work on 3D pre-training exhibits failure when transfer features learned on synthetic objects to other real-world applications.
In this work, we put forward a new method called RandomRooms to accomplish this objective.
arXiv Detail & Related papers (2021-08-17T17:56:12Z) - IAFA: Instance-aware Feature Aggregation for 3D Object Detection from a
Single Image [37.83574424518901]
3D object detection from a single image is an important task in Autonomous Driving.
We propose an instance-aware approach to aggregate useful information for improving the accuracy of 3D object detection.
arXiv Detail & Related papers (2021-03-05T05:47:52Z) - Weakly-Supervised 3D Human Pose Learning via Multi-view Images in the
Wild [101.70320427145388]
We propose a weakly-supervised approach that does not require 3D annotations and learns to estimate 3D poses from unlabeled multi-view data.
We evaluate our proposed approach on two large scale datasets.
arXiv Detail & Related papers (2020-03-17T08:47:16Z) - CPS++: Improving Class-level 6D Pose and Shape Estimation From Monocular
Images With Self-Supervised Learning [74.53664270194643]
Modern monocular 6D pose estimation methods can only cope with a handful of object instances.
We propose a novel method for class-level monocular 6D pose estimation, coupled with metric shape retrieval.
We experimentally demonstrate that we can retrieve precise 6D poses and metric shapes from a single RGB image.
arXiv Detail & Related papers (2020-03-12T15:28:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.