Comparing Normalization Methods for Limited Batch Size Segmentation
Neural Networks
- URL: http://arxiv.org/abs/2011.11559v1
- Date: Mon, 23 Nov 2020 17:13:24 GMT
- Title: Comparing Normalization Methods for Limited Batch Size Segmentation
Neural Networks
- Authors: Martin Kolarik, Radim Burget, Kamil Riha
- Abstract summary: Batch Normalization works best using large batch size during training.
We show the effectiveness of Instance Normalization in the limited batch size neural network training environment.
We also show that the Instance Normalization implementation used in this experiment is computational time efficient when compared to the network without any normalization method.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The widespread use of Batch Normalization has enabled training deeper neural
networks with more stable and faster results. However, the Batch Normalization
works best using large batch size during training and as the state-of-the-art
segmentation convolutional neural network architectures are very memory
demanding, large batch size is often impossible to achieve on current hardware.
We evaluate the alternative normalization methods proposed to solve this issue
on a problem of binary spine segmentation from 3D CT scan. Our results show the
effectiveness of Instance Normalization in the limited batch size neural
network training environment. Out of all the compared methods the Instance
Normalization achieved the highest result with Dice coefficient = 0.96 which is
comparable to our previous results achieved by deeper network with longer
training time. We also show that the Instance Normalization implementation used
in this experiment is computational time efficient when compared to the network
without any normalization method.
Related papers
- Exploring the Efficacy of Group-Normalization in Deep Learning Models for Alzheimer's Disease Classification [2.6447365674762273]
Group Normalization is an easy alternative to Batch Normalization.
GN achieves a very low error rate of 10.6% compared to Batch Normalization.
arXiv Detail & Related papers (2024-04-01T06:10:11Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Batch Layer Normalization, A new normalization layer for CNNs and RNN [0.0]
This study introduces a new normalization layer termed Batch Layer Normalization (BLN)
As a combined version of batch and layer normalization, BLN adaptively puts appropriate weight on mini-batch and feature normalization based on the inverse size of mini-batches.
Test results indicate the application potential of BLN and its faster convergence than batch normalization and layer normalization in both Convolutional and Recurrent Neural Networks.
arXiv Detail & Related papers (2022-09-19T10:12:51Z) - Training Thinner and Deeper Neural Networks: Jumpstart Regularization [2.8348950186890467]
We use regularization to prevent neurons from dying or becoming linear.
In comparison to conventional training, we obtain neural networks that are thinner, deeper, and - most importantly - more parameter-efficient.
arXiv Detail & Related papers (2022-01-30T12:11:24Z) - Distribution Mismatch Correction for Improved Robustness in Deep Neural
Networks [86.42889611784855]
normalization methods increase the vulnerability with respect to noise and input corruptions.
We propose an unsupervised non-parametric distribution correction method that adapts the activation distribution of each layer.
In our experiments, we empirically show that the proposed method effectively reduces the impact of intense image corruptions.
arXiv Detail & Related papers (2021-10-05T11:36:25Z) - Training Deep Neural Networks Without Batch Normalization [4.266320191208303]
This work studies batch normalization in detail, while comparing it with other methods such as weight normalization, gradient clipping and dropout.
The main purpose of this work is to determine if it is possible to train networks effectively when batch normalization is removed through adaption of the training process.
arXiv Detail & Related papers (2020-08-18T15:04:40Z) - Optimization Theory for ReLU Neural Networks Trained with Normalization
Layers [82.61117235807606]
The success of deep neural networks in part due to the use of normalization layers.
Our analysis shows how the introduction of normalization changes the landscape and can enable faster activation.
arXiv Detail & Related papers (2020-06-11T23:55:54Z) - Distance-Based Regularisation of Deep Networks for Fine-Tuning [116.71288796019809]
We develop an algorithm that constrains a hypothesis class to a small sphere centred on the initial pre-trained weights.
Empirical evaluation shows that our algorithm works well, corroborating our theoretical results.
arXiv Detail & Related papers (2020-02-19T16:00:47Z) - Cross-Iteration Batch Normalization [67.83430009388678]
We present Cross-It Batch Normalization (CBN), in which examples from multiple recent iterations are jointly utilized to enhance estimation quality.
CBN is found to outperform the original batch normalization and a direct calculation of statistics over previous iterations without the proposed compensation technique.
arXiv Detail & Related papers (2020-02-13T18:52:57Z) - Large Batch Training Does Not Need Warmup [111.07680619360528]
Training deep neural networks using a large batch size has shown promising results and benefits many real-world applications.
In this paper, we propose a novel Complete Layer-wise Adaptive Rate Scaling (CLARS) algorithm for large-batch training.
Based on our analysis, we bridge the gap and illustrate the theoretical insights for three popular large-batch training techniques.
arXiv Detail & Related papers (2020-02-04T23:03:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.