Continuous Surface Embeddings
- URL: http://arxiv.org/abs/2011.12438v1
- Date: Tue, 24 Nov 2020 22:52:15 GMT
- Title: Continuous Surface Embeddings
- Authors: Natalia Neverova, David Novotny, Vasil Khalidov, Marc Szafraniec,
Patrick Labatut, Andrea Vedaldi
- Abstract summary: We focus on the task of learning and representing dense correspondences in deformable object categories.
We propose a new, learnable image-based representation of dense correspondences.
We demonstrate that the proposed approach performs on par or better than the state-of-the-art methods for dense pose estimation for humans.
- Score: 76.86259029442624
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we focus on the task of learning and representing dense
correspondences in deformable object categories. While this problem has been
considered before, solutions so far have been rather ad-hoc for specific object
types (i.e., humans), often with significant manual work involved. However,
scaling the geometry understanding to all objects in nature requires more
automated approaches that can also express correspondences between related, but
geometrically different objects. To this end, we propose a new, learnable
image-based representation of dense correspondences. Our model predicts, for
each pixel in a 2D image, an embedding vector of the corresponding vertex in
the object mesh, therefore establishing dense correspondences between image
pixels and 3D object geometry. We demonstrate that the proposed approach
performs on par or better than the state-of-the-art methods for dense pose
estimation for humans, while being conceptually simpler. We also collect a new
in-the-wild dataset of dense correspondences for animal classes and demonstrate
that our framework scales naturally to the new deformable object categories.
Related papers
- Interior Object Geometry via Fitted Frames [18.564031163436553]
We describe a representation targeted for anatomic objects which is designed to enable strong locational correspondence within object populations.
The method generates fitted frames on the boundary and in the interior of objects and produces alignment-free geometric features from them.
arXiv Detail & Related papers (2024-07-19T14:38:47Z) - GS-Pose: Category-Level Object Pose Estimation via Geometric and
Semantic Correspondence [5.500735640045456]
Category-level pose estimation is a challenging task with many potential applications in computer vision and robotics.
We propose to utilize both geometric and semantic features obtained from a pre-trained foundation model.
This requires significantly less data to train than prior methods since the semantic features are robust to object texture and appearance.
arXiv Detail & Related papers (2023-11-23T02:35:38Z) - MegaPose: 6D Pose Estimation of Novel Objects via Render & Compare [84.80956484848505]
MegaPose is a method to estimate the 6D pose of novel objects, that is, objects unseen during training.
We present a 6D pose refiner based on a render&compare strategy which can be applied to novel objects.
Second, we introduce a novel approach for coarse pose estimation which leverages a network trained to classify whether the pose error between a synthetic rendering and an observed image of the same object can be corrected by the refiner.
arXiv Detail & Related papers (2022-12-13T19:30:03Z) - Generative Category-Level Shape and Pose Estimation with Semantic
Primitives [27.692997522812615]
We propose a novel framework for category-level object shape and pose estimation from a single RGB-D image.
To handle the intra-category variation, we adopt a semantic primitive representation that encodes diverse shapes into a unified latent space.
We show that the proposed method achieves SOTA pose estimation performance and better generalization in the real-world dataset.
arXiv Detail & Related papers (2022-10-03T17:51:54Z) - Category-Agnostic 6D Pose Estimation with Conditional Neural Processes [19.387280883044482]
We present a novel meta-learning approach for 6D pose estimation on unknown objects.
Our algorithm learns object representation in a category-agnostic way, which endows it with strong generalization capabilities across object categories.
arXiv Detail & Related papers (2022-06-14T20:46:09Z) - Disentangled Implicit Shape and Pose Learning for Scalable 6D Pose
Estimation [44.8872454995923]
We present a novel approach for scalable 6D pose estimation, by self-supervised learning on synthetic data of multiple objects using a single autoencoder.
We test our method on two multi-object benchmarks with real data, T-LESS and NOCS REAL275, and show it outperforms existing RGB-based methods in terms of pose estimation accuracy and generalization.
arXiv Detail & Related papers (2021-07-27T01:55:30Z) - DONet: Learning Category-Level 6D Object Pose and Size Estimation from
Depth Observation [53.55300278592281]
We propose a method of Category-level 6D Object Pose and Size Estimation (COPSE) from a single depth image.
Our framework makes inferences based on the rich geometric information of the object in the depth channel alone.
Our framework competes with state-of-the-art approaches that require labeled real-world images.
arXiv Detail & Related papers (2021-06-27T10:41:50Z) - Joint Deep Multi-Graph Matching and 3D Geometry Learning from
Inhomogeneous 2D Image Collections [57.60094385551773]
We propose a trainable framework for learning a deformable 3D geometry model from inhomogeneous image collections.
We in addition obtain the underlying 3D geometry of the objects depicted in the 2D images.
arXiv Detail & Related papers (2021-03-31T17:25:36Z) - Canonical 3D Deformer Maps: Unifying parametric and non-parametric
methods for dense weakly-supervised category reconstruction [79.98689027127855]
We propose a new representation of the 3D shape of common object categories that can be learned from a collection of 2D images of independent objects.
Our method builds in a novel way on concepts from parametric deformation models, non-parametric 3D reconstruction, and canonical embeddings.
It achieves state-of-the-art results in dense 3D reconstruction on public in-the-wild datasets of faces, cars, and birds.
arXiv Detail & Related papers (2020-08-28T15:44:05Z) - Shape Prior Deformation for Categorical 6D Object Pose and Size
Estimation [62.618227434286]
We present a novel learning approach to recover the 6D poses and sizes of unseen object instances from an RGB-D image.
We propose a deep network to reconstruct the 3D object model by explicitly modeling the deformation from a pre-learned categorical shape prior.
arXiv Detail & Related papers (2020-07-16T16:45:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.