Omni: Automated Ensemble with Unexpected Models against Adversarial
Evasion Attack
- URL: http://arxiv.org/abs/2011.12720v2
- Date: Tue, 12 Oct 2021 18:04:38 GMT
- Title: Omni: Automated Ensemble with Unexpected Models against Adversarial
Evasion Attack
- Authors: Rui Shu, Tianpei Xia, Laurie Williams, Tim Menzies
- Abstract summary: A machine learning-based security detection model is susceptible to adversarial evasion attacks.
We propose an approach called Omni to explore methods that create an ensemble of "unexpected models"
In studies with five types of adversarial evasion attacks, we show Omni is a promising approach as a defense strategy.
- Score: 35.0689225703137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background: Machine learning-based security detection models have become
prevalent in modern malware and intrusion detection systems. However, previous
studies show that such models are susceptible to adversarial evasion attacks.
In this type of attack, inputs (i.e., adversarial examples) are specially
crafted by intelligent malicious adversaries, with the aim of being
misclassified by existing state-of-the-art models (e.g., deep neural networks).
Once the attackers can fool a classifier to think that a malicious input is
actually benign, they can render a machine learning-based malware or intrusion
detection system ineffective. Goal: To help security practitioners and
researchers build a more robust model against non-adaptive, white-box, and
non-targeted adversarial evasion attacks through the idea of an ensemble model.
Method: We propose an approach called Omni, the main idea of which is to
explore methods that create an ensemble of "unexpected models"; i.e., models
whose control hyperparameters have a large distance to the hyperparameters of
an adversary's target model, with which we then make an optimized weighted
ensemble prediction. Result: In studies with five types of adversarial evasion
attacks (FGSM, BIM, JSMA, DeepFooland Carlini-Wagner) on five security datasets
(NSL-KDD, CIC-IDS-2017, CSE-CIC-IDS2018, CICAnd-Mal2017, and the Contagio PDF
dataset), we show Omni is a promising approach as a defense strategy against
adversarial attacks when compared with other baseline treatments. Conclusion:
When employing ensemble defense against adversarial evasion attacks, we suggest
creating an ensemble with unexpected models that are distant from the
attacker's expected model (i.e., target model) through methods such as
hyperparameter optimization.
Related papers
- Defense Against Model Extraction Attacks on Recommender Systems [53.127820987326295]
We introduce Gradient-based Ranking Optimization (GRO) to defend against model extraction attacks on recommender systems.
GRO aims to minimize the loss of the protected target model while maximizing the loss of the attacker's surrogate model.
Results show GRO's superior effectiveness in defending against model extraction attacks.
arXiv Detail & Related papers (2023-10-25T03:30:42Z) - Adversarial Attacks Neutralization via Data Set Randomization [3.655021726150369]
Adversarial attacks on deep learning models pose a serious threat to their reliability and security.
We propose a new defense mechanism that is rooted on hyperspace projection.
We show that our solution increases the robustness of deep learning models against adversarial attacks.
arXiv Detail & Related papers (2023-06-21T10:17:55Z) - Can Adversarial Examples Be Parsed to Reveal Victim Model Information? [62.814751479749695]
In this work, we ask whether it is possible to infer data-agnostic victim model (VM) information from data-specific adversarial instances.
We collect a dataset of adversarial attacks across 7 attack types generated from 135 victim models.
We show that a simple, supervised model parsing network (MPN) is able to infer VM attributes from unseen adversarial attacks.
arXiv Detail & Related papers (2023-03-13T21:21:49Z) - DODEM: DOuble DEfense Mechanism Against Adversarial Attacks Towards
Secure Industrial Internet of Things Analytics [8.697883716452385]
We propose a double defense mechanism to detect and mitigate adversarial attacks in I-IoT environments.
We first detect if there is an adversarial attack on a given sample using novelty detection algorithms.
If there is an attack, adversarial retraining provides a more robust model, while we apply standard training for regular samples.
arXiv Detail & Related papers (2023-01-23T22:10:40Z) - I Know What You Trained Last Summer: A Survey on Stealing Machine
Learning Models and Defences [0.1031296820074812]
We study model stealing attacks, assessing their performance and exploring corresponding defence techniques in different settings.
We propose a taxonomy for attack and defence approaches, and provide guidelines on how to select the right attack or defence based on the goal and available resources.
arXiv Detail & Related papers (2022-06-16T21:16:41Z) - Interpolated Joint Space Adversarial Training for Robust and
Generalizable Defenses [82.3052187788609]
Adversarial training (AT) is considered to be one of the most reliable defenses against adversarial attacks.
Recent works show generalization improvement with adversarial samples under novel threat models.
We propose a novel threat model called Joint Space Threat Model (JSTM)
Under JSTM, we develop novel adversarial attacks and defenses.
arXiv Detail & Related papers (2021-12-12T21:08:14Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - ExAD: An Ensemble Approach for Explanation-based Adversarial Detection [17.455233006559734]
We propose ExAD, a framework to detect adversarial examples using an ensemble of explanation techniques.
We evaluate our approach using six state-of-the-art adversarial attacks on three image datasets.
arXiv Detail & Related papers (2021-03-22T00:53:07Z) - Practical No-box Adversarial Attacks against DNNs [31.808770437120536]
We investigate no-box adversarial examples, where the attacker can neither access the model information or the training set nor query the model.
We propose three mechanisms for training with a very small dataset and find that prototypical reconstruction is the most effective.
Our approach significantly diminishes the average prediction accuracy of the system to only 15.40%, which is on par with the attack that transfers adversarial examples from a pre-trained Arcface model.
arXiv Detail & Related papers (2020-12-04T11:10:03Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z) - Defense for Black-box Attacks on Anti-spoofing Models by Self-Supervised
Learning [71.17774313301753]
We explore the robustness of self-supervised learned high-level representations by using them in the defense against adversarial attacks.
Experimental results on the ASVspoof 2019 dataset demonstrate that high-level representations extracted by Mockingjay can prevent the transferability of adversarial examples.
arXiv Detail & Related papers (2020-06-05T03:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.