Deep Magnification-Flexible Upsampling over 3D Point Clouds
- URL: http://arxiv.org/abs/2011.12745v4
- Date: Tue, 29 Mar 2022 13:46:59 GMT
- Title: Deep Magnification-Flexible Upsampling over 3D Point Clouds
- Authors: Yue Qian, Junhui Hou, Sam Kwong and Ying He
- Abstract summary: We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
- Score: 103.09504572409449
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the problem of generating dense point clouds from given
sparse point clouds to model the underlying geometric structures of
objects/scenes. To tackle this challenging issue, we propose a novel end-to-end
learning-based framework. Specifically, by taking advantage of the linear
approximation theorem, we first formulate the problem explicitly, which boils
down to determining the interpolation weights and high-order approximation
errors. Then, we design a lightweight neural network to adaptively learn
unified and sorted interpolation weights as well as the high-order refinements,
by analyzing the local geometry of the input point cloud. The proposed method
can be interpreted by the explicit formulation, and thus is more
memory-efficient than existing ones. In sharp contrast to the existing methods
that work only for a pre-defined and fixed upsampling factor, the proposed
framework only requires a single neural network with one-time training to
handle various upsampling factors within a typical range, which is highly
desired in real-world applications. In addition, we propose a simple yet
effective training strategy to drive such a flexible ability. In addition, our
method can handle non-uniformly distributed and noisy data well. Extensive
experiments on both synthetic and real-world data demonstrate the superiority
of the proposed method over state-of-the-art methods both quantitatively and
qualitatively.
Related papers
- Curvature Informed Furthest Point Sampling [0.0]
We introduce a reinforcement learning-based sampling algorithm that enhances furthest point sampling (FPS)
Our approach ranks points by combining FPS-derived soft ranks with curvature scores computed by a deep neural network.
We provide comprehensive ablation studies, with both qualitative and quantitative insights into the effect of each feature on performance.
arXiv Detail & Related papers (2024-11-25T23:58:38Z) - OCMG-Net: Neural Oriented Normal Refinement for Unstructured Point Clouds [18.234146052486054]
We present a robust refinement method for estimating oriented normals from unstructured point clouds.
Our framework incorporates sign orientation and data augmentation in the feature space to refine the initial oriented normals.
To address the issue of noise-caused direction inconsistency existing in previous approaches, we introduce a new metric called the Chamfer Normal Distance.
arXiv Detail & Related papers (2024-09-02T09:30:02Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Point Cloud Upsampling via Cascaded Refinement Network [39.79759035338819]
Upsampling point cloud in a coarse-to-fine manner is a decent solution.
Existing coarse-to-fine upsampling methods require extra training strategies.
In this paper, we propose a simple yet effective cascaded refinement network.
arXiv Detail & Related papers (2022-10-08T07:09:37Z) - BIMS-PU: Bi-Directional and Multi-Scale Point Cloud Upsampling [60.257912103351394]
We develop a new point cloud upsampling pipeline called BIMS-PU.
We decompose the up/downsampling procedure into several up/downsampling sub-steps by breaking the target sampling factor into smaller factors.
We show that our method achieves superior results to state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-25T13:13:37Z) - Self-Supervised Arbitrary-Scale Point Clouds Upsampling via Implicit
Neural Representation [79.60988242843437]
We propose a novel approach that achieves self-supervised and magnification-flexible point clouds upsampling simultaneously.
Experimental results demonstrate that our self-supervised learning based scheme achieves competitive or even better performance than supervised learning based state-of-the-art methods.
arXiv Detail & Related papers (2022-04-18T07:18:25Z) - Revisiting Point Cloud Simplification: A Learnable Feature Preserving
Approach [57.67932970472768]
Mesh and Point Cloud simplification methods aim to reduce the complexity of 3D models while retaining visual quality and relevant salient features.
We propose a fast point cloud simplification method by learning to sample salient points.
The proposed method relies on a graph neural network architecture trained to select an arbitrary, user-defined, number of points from the input space and to re-arrange their positions so as to minimize the visual perception error.
arXiv Detail & Related papers (2021-09-30T10:23:55Z) - PU-Flow: a Point Cloud Upsampling Networkwith Normalizing Flows [58.96306192736593]
We present PU-Flow, which incorporates normalizing flows and feature techniques to produce dense points uniformly distributed on the underlying surface.
Specifically, we formulate the upsampling process as point in a latent space, where the weights are adaptively learned from local geometric context.
We show that our method outperforms state-of-the-art deep learning-based approaches in terms of reconstruction quality, proximity-to-surface accuracy, and computation efficiency.
arXiv Detail & Related papers (2021-07-13T07:45:48Z) - Level-Set Curvature Neural Networks: A Hybrid Approach [0.0]
We present a hybrid strategy based on deep learning to compute mean curvature in the level-set method.
The proposed inference system combines a dictionary of improved regression models with standard numerical schemes to estimate curvature more accurately.
Our findings confirm that machine learning is a promising venue for devising viable solutions to the level-set method's numerical shortcomings.
arXiv Detail & Related papers (2021-04-07T06:51:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.