Combinatorial Bayesian Optimization with Random Mapping Functions to
Convex Polytopes
- URL: http://arxiv.org/abs/2011.13094v2
- Date: Mon, 20 Jun 2022 05:33:12 GMT
- Title: Combinatorial Bayesian Optimization with Random Mapping Functions to
Convex Polytopes
- Authors: Jungtaek Kim, Seungjin Choi, Minsu Cho
- Abstract summary: We present a method for Bayesian optimization in a space which can operate well in a large space.
Our algorithm shows satisfactory performance compared to existing methods.
- Score: 43.19936635161588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian optimization is a popular method for solving the problem of global
optimization of an expensive-to-evaluate black-box function. It relies on a
probabilistic surrogate model of the objective function, upon which an
acquisition function is built to determine where next to evaluate the objective
function. In general, Bayesian optimization with Gaussian process regression
operates on a continuous space. When input variables are categorical or
discrete, an extra care is needed. A common approach is to use one-hot encoded
or Boolean representation for categorical variables which might yield a
combinatorial explosion problem. In this paper we present a method for Bayesian
optimization in a combinatorial space, which can operate well in a large
combinatorial space. The main idea is to use a random mapping which embeds the
combinatorial space into a convex polytope in a continuous space, on which all
essential process is performed to determine a solution to the black-box
optimization in the combinatorial space. We describe our combinatorial Bayesian
optimization algorithm and present its regret analysis. Numerical experiments
demonstrate that our method shows satisfactory performance compared to existing
methods.
Related papers
- Simulation Based Bayesian Optimization [0.6526824510982799]
This paper introduces Simulation Based Bayesian Optimization (SBBO) as a novel approach to optimizing acquisition functions.
SBBO allows the use of surrogate models tailored for spaces with discrete variables.
We demonstrate empirically the effectiveness of SBBO method using various choices of surrogate models.
arXiv Detail & Related papers (2024-01-19T16:56:11Z) - SOBER: Highly Parallel Bayesian Optimization and Bayesian Quadrature
over Discrete and Mixed Spaces [6.573393706476156]
We present a novel diversified global optimisation quadrature with arbitrary kernels over discrete and mixed spaces.
Batch quadrature can efficiently solve both tasks by balancing the merits of exploitative Bayesian quadrature.
We show that SOBER outperforms competitive baselinesefficient batch and scalable real-world tasks.
arXiv Detail & Related papers (2023-01-27T16:36:33Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Bayesian Optimization over Permutation Spaces [30.650753803587794]
We propose and evaluate two algorithms for BO over Permutation Spaces (BOPS)
We theoretically analyze the performance of BOPS-T to show that their regret grows sub-linearly.
Our experiments on multiple synthetic and real-world benchmarks show that both BOPS-T and BOPS-H perform better than the state-of-the-art BO algorithm for spaces.
arXiv Detail & Related papers (2021-12-02T08:20:50Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information [78.78486761923855]
In many real world problems, we want to infer some property of an expensive black-box function f, given a budget of T function evaluations.
We present a procedure, InfoBAX, that sequentially chooses queries that maximize mutual information with respect to the algorithm's output.
On these problems, InfoBAX uses up to 500 times fewer queries to f than required by the original algorithm.
arXiv Detail & Related papers (2021-04-19T17:22:11Z) - Bayesian Variational Optimization for Combinatorial Spaces [0.0]
Broad applications include the study of molecules, proteins, DNA, device structures and quantum circuit designs.
A on optimization over categorical spaces is needed to find optimal or pareto-optimal solutions.
We introduce a variational Bayesian optimization method that combines variational optimization and continuous relaxations.
arXiv Detail & Related papers (2020-11-03T20:56:13Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
Our algorithm generates a sequence of finite-dimensional random subspaces of functional space spanned by a set of draws from the experimenter's Gaussian Process.
Standard Bayesian optimisation is applied on each subspace, and the best solution found used as a starting point (origin) for the next subspace.
We test our algorithm in simulated and real-world experiments, namely blind function matching, finding the optimal precipitation-strengthening function for an aluminium alloy, and learning rate schedule optimisation for deep networks.
arXiv Detail & Related papers (2020-09-08T06:54:11Z) - Incorporating Expert Prior in Bayesian Optimisation via Space Warping [54.412024556499254]
In big search spaces the algorithm goes through several low function value regions before reaching the optimum of the function.
One approach to subside this cold start phase is to use prior knowledge that can accelerate the optimisation.
In this paper, we represent the prior knowledge about the function optimum through a prior distribution.
The prior distribution is then used to warp the search space in such a way that space gets expanded around the high probability region of function optimum and shrinks around low probability region of optimum.
arXiv Detail & Related papers (2020-03-27T06:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.