Patch-VQ: 'Patching Up' the Video Quality Problem
- URL: http://arxiv.org/abs/2011.13544v2
- Date: Fri, 25 Feb 2022 05:57:21 GMT
- Title: Patch-VQ: 'Patching Up' the Video Quality Problem
- Authors: Zhenqiang Ying (1), Maniratnam Mandal (1), Deepti Ghadiyaram (2), Alan
Bovik (1) ((1) University of Texas at Austin, (2) Facebook AI)
- Abstract summary: No-reference (NR) perceptual video quality assessment (VQA) is a complex, unsolved, and important problem to social and streaming media applications.
Current NR models are limited in their prediction capabilities on real-world, "in-the-wild" video data.
We create the largest (by far) subjective video quality dataset, containing 39, 000 realworld distorted videos and 117, 000 space-time localized video patches.
- Score: 0.9786690381850356
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: No-reference (NR) perceptual video quality assessment (VQA) is a complex,
unsolved, and important problem to social and streaming media applications.
Efficient and accurate video quality predictors are needed to monitor and guide
the processing of billions of shared, often imperfect, user-generated content
(UGC). Unfortunately, current NR models are limited in their prediction
capabilities on real-world, "in-the-wild" UGC video data. To advance progress
on this problem, we created the largest (by far) subjective video quality
dataset, containing 39, 000 realworld distorted videos and 117, 000 space-time
localized video patches ('v-patches'), and 5.5M human perceptual quality
annotations. Using this, we created two unique NR-VQA models: (a) a
local-to-global region-based NR VQA architecture (called PVQ) that learns to
predict global video quality and achieves state-of-the-art performance on 3 UGC
datasets, and (b) a first-of-a-kind space-time video quality mapping engine
(called PVQ Mapper) that helps localize and visualize perceptual distortions in
space and time. We will make the new database and prediction models available
immediately following the review process.
Related papers
- LMM-VQA: Advancing Video Quality Assessment with Large Multimodal Models [53.64461404882853]
Video quality assessment (VQA) algorithms are needed to monitor and optimize the quality of streaming videos.
Here, we propose the first Large Multi-Modal Video Quality Assessment (LMM-VQA) model, which introduces a novel visual modeling strategy for quality-aware feature extraction.
arXiv Detail & Related papers (2024-08-26T04:29:52Z) - Benchmarking AIGC Video Quality Assessment: A Dataset and Unified Model [54.69882562863726]
We try to systemically investigate the AIGC-VQA problem from both subjective and objective quality assessment perspectives.
We evaluate the perceptual quality of AIGC videos from three dimensions: spatial quality, temporal quality, and text-to-video alignment.
We propose a Unify Generated Video Quality assessment (UGVQ) model to comprehensively and accurately evaluate the quality of AIGC videos.
arXiv Detail & Related papers (2024-07-31T07:54:26Z) - Enhancing Blind Video Quality Assessment with Rich Quality-aware Features [79.18772373737724]
We present a simple but effective method to enhance blind video quality assessment (BVQA) models for social media videos.
We explore rich quality-aware features from pre-trained blind image quality assessment (BIQA) and BVQA models as auxiliary features.
Experimental results demonstrate that the proposed model achieves the best performance on three public social media VQA datasets.
arXiv Detail & Related papers (2024-05-14T16:32:11Z) - KVQ: Kwai Video Quality Assessment for Short-form Videos [24.5291786508361]
We establish the first large-scale Kaleidoscope short Video database for Quality assessment, KVQ, which comprises 600 user-uploaded short videos and 3600 processed videos.
We propose the first short-form video quality evaluator, i.e., KSVQE, which enables the quality evaluator to identify the quality-determined semantics with the content understanding of large vision language models.
arXiv Detail & Related papers (2024-02-11T14:37:54Z) - MRET: Multi-resolution Transformer for Video Quality Assessment [37.355412115794195]
No-reference video quality assessment (NR-VQA) for user generated content (UGC) is crucial for understanding and improving visual experience.
Since large amounts of videos nowadays are 720p or above, the fixed and relatively small input used in conventional NR-VQA methods results in missing high-frequency details for many videos.
We propose a novel Transformer-based NR-VQA framework that preserves the high-resolution quality information.
arXiv Detail & Related papers (2023-03-13T21:48:49Z) - Exploring the Effectiveness of Video Perceptual Representation in Blind
Video Quality Assessment [55.65173181828863]
We propose a temporal perceptual quality index (TPQI) to measure the temporal distortion by describing the graphic morphology of the representation.
Experiments show that TPQI is an effective way of predicting subjective temporal quality.
arXiv Detail & Related papers (2022-07-08T07:30:51Z) - A Deep Learning based No-reference Quality Assessment Model for UGC
Videos [44.00578772367465]
Previous video quality assessment (VQA) studies either use the image recognition model or the image quality assessment (IQA) models to extract frame-level features of videos for quality regression.
We propose a very simple but effective VQA model, which trains an end-to-end spatial feature extraction network to learn the quality-aware spatial feature representation from raw pixels of the video frames.
With the better quality-aware features, we only use the simple multilayer perception layer (MLP) network to regress them into the chunk-level quality scores, and then the temporal average pooling strategy is adopted to obtain the video
arXiv Detail & Related papers (2022-04-29T12:45:21Z) - Blind VQA on 360{\deg} Video via Progressively Learning from Pixels,
Frames and Video [66.57045901742922]
Blind visual quality assessment (BVQA) on 360textdegree video plays a key role in optimizing immersive multimedia systems.
In this paper, we take into account the progressive paradigm of human perception towards spherical video quality.
We propose a novel BVQA approach (namely ProVQA) for 360textdegree video via progressively learning from pixels, frames and video.
arXiv Detail & Related papers (2021-11-18T03:45:13Z) - RAPIQUE: Rapid and Accurate Video Quality Prediction of User Generated
Content [44.03188436272383]
We introduce an effective and efficient video quality model for content, which we dub the Rapid and Accurate Video Quality Evaluator (RAPIQUE)
RAPIQUE combines and leverages the advantages of both quality-aware scene statistics features and semantics-aware deep convolutional features.
Our experimental results on recent large-scale video quality databases show that RAPIQUE delivers top performances on all the datasets at a considerably lower computational expense.
arXiv Detail & Related papers (2021-01-26T17:23:46Z) - UGC-VQA: Benchmarking Blind Video Quality Assessment for User Generated
Content [59.13821614689478]
Blind quality prediction of in-the-wild videos is quite challenging, since the quality degradations of content are unpredictable, complicated, and often commingled.
Here we contribute to advancing the problem by conducting a comprehensive evaluation of leading VQA models.
By employing a feature selection strategy on top of leading VQA model features, we are able to extract 60 of the 763 statistical features used by the leading models.
Our experimental results show that VIDEVAL achieves state-of-theart performance at considerably lower computational cost than other leading models.
arXiv Detail & Related papers (2020-05-29T00:39:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.