Truly shift-invariant convolutional neural networks
- URL: http://arxiv.org/abs/2011.14214v4
- Date: Tue, 30 Mar 2021 19:47:57 GMT
- Title: Truly shift-invariant convolutional neural networks
- Authors: Anadi Chaman (1), Ivan Dokmani\'c (2) ((1) University of Illinois at
Urbana-Champaign, (2) University of Basel)
- Abstract summary: Recent works have shown that the output of a CNN can change significantly with small shifts in input.
We propose adaptive polyphase sampling (APS), a simple sub-sampling scheme that allows convolutional neural networks to achieve 100% consistency in classification performance under shifts.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Thanks to the use of convolution and pooling layers, convolutional neural
networks were for a long time thought to be shift-invariant. However, recent
works have shown that the output of a CNN can change significantly with small
shifts in input: a problem caused by the presence of downsampling (stride)
layers. The existing solutions rely either on data augmentation or on
anti-aliasing, both of which have limitations and neither of which enables
perfect shift invariance. Additionally, the gains obtained from these methods
do not extend to image patterns not seen during training. To address these
challenges, we propose adaptive polyphase sampling (APS), a simple sub-sampling
scheme that allows convolutional neural networks to achieve 100% consistency in
classification performance under shifts, without any loss in accuracy. With
APS, the networks exhibit perfect consistency to shifts even before training,
making it the first approach that makes convolutional neural networks truly
shift-invariant.
Related papers
- Normalization-Equivariant Neural Networks with Application to Image
Denoising [3.591122855617648]
We propose a methodology for adapting existing neural networks so that normalization-equivariance holds by design.
Our main claim is that not only ordinary convolutional layers, but also all activation functions, should be completely removed from neural networks.
Experimental results in image denoising show that normalization-equivariant neural networks, in addition to their better conditioning, also provide much better generalization across noise levels.
arXiv Detail & Related papers (2023-06-08T08:42:08Z) - Deep Neural Networks with Efficient Guaranteed Invariances [77.99182201815763]
We address the problem of improving the performance and in particular the sample complexity of deep neural networks.
Group-equivariant convolutions are a popular approach to obtain equivariant representations.
We propose a multi-stream architecture, where each stream is invariant to a different transformation.
arXiv Detail & Related papers (2023-03-02T20:44:45Z) - On the effectiveness of partial variance reduction in federated learning
with heterogeneous data [27.527995694042506]
We show that the diversity of the final classification layers across clients impedes the performance of the FedAvg algorithm.
Motivated by this, we propose to correct model by variance reduction only on the final layers.
We demonstrate that this significantly outperforms existing benchmarks at a similar or lower communication cost.
arXiv Detail & Related papers (2022-12-05T11:56:35Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
Leveraging prior knowledge on intraclass variance due to transformations is a powerful method to improve the sample complexity of deep neural networks.
We propose a novel monomial selection algorithm based on pruning methods to allow an application to more complex problems.
We demonstrate the improved sample complexity on the Rotated-MNIST, SVHN and CIFAR-10 datasets.
arXiv Detail & Related papers (2022-02-08T16:16:11Z) - Revisiting Transformation Invariant Geometric Deep Learning: Are Initial
Representations All You Need? [80.86819657126041]
We show that transformation-invariant and distance-preserving initial representations are sufficient to achieve transformation invariance.
Specifically, we realize transformation-invariant and distance-preserving initial point representations by modifying multi-dimensional scaling.
We prove that TinvNN can strictly guarantee transformation invariance, being general and flexible enough to be combined with the existing neural networks.
arXiv Detail & Related papers (2021-12-23T03:52:33Z) - Distribution Mismatch Correction for Improved Robustness in Deep Neural
Networks [86.42889611784855]
normalization methods increase the vulnerability with respect to noise and input corruptions.
We propose an unsupervised non-parametric distribution correction method that adapts the activation distribution of each layer.
In our experiments, we empirically show that the proposed method effectively reduces the impact of intense image corruptions.
arXiv Detail & Related papers (2021-10-05T11:36:25Z) - A Sparse Coding Interpretation of Neural Networks and Theoretical
Implications [0.0]
Deep convolutional neural networks have achieved unprecedented performance in various computer vision tasks.
We propose a sparse coding interpretation of neural networks that have ReLU activation.
We derive a complete convolutional neural network without normalization and pooling.
arXiv Detail & Related papers (2021-08-14T21:54:47Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
Deep neural network (DNN) generally takes thousands of iterations to optimize via gradient descent.
We propose a novel manifold neural network based on non-gradient optimization.
arXiv Detail & Related papers (2021-06-15T06:39:13Z) - Truly shift-equivariant convolutional neural networks with adaptive
polyphase upsampling [28.153820129486025]
In image classification, adaptive polyphase downsampling (APS-D) was recently proposed to make CNNs perfectly shift invariant.
We propose adaptive polyphase upsampling (APS-U), a non-linear extension of conventional upsampling, which allows CNNs to exhibit perfect shift equivariance.
arXiv Detail & Related papers (2021-05-09T22:33:53Z) - Exploiting Invariance in Training Deep Neural Networks [4.169130102668252]
Inspired by two basic mechanisms in animal visual systems, we introduce a feature transform technique that imposes invariance properties in the training of deep neural networks.
The resulting algorithm requires less parameter tuning, trains well with an initial learning rate 1.0, and easily generalizes to different tasks.
Tested on ImageNet, MS COCO, and Cityscapes datasets, our proposed technique requires fewer iterations to train, surpasses all baselines by a large margin, seamlessly works on both small and large batch size training, and applies to different computer vision tasks of image classification, object detection, and semantic segmentation.
arXiv Detail & Related papers (2021-03-30T19:18:31Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts.
We study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time.
We find that increasing both the training set and model sizes significantly improve the distributional shift robustness.
arXiv Detail & Related papers (2020-07-16T18:39:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.