Hybrid Imitation Learning for Real-Time Service Restoration in Resilient
Distribution Systems
- URL: http://arxiv.org/abs/2011.14458v3
- Date: Mon, 10 May 2021 16:34:23 GMT
- Title: Hybrid Imitation Learning for Real-Time Service Restoration in Resilient
Distribution Systems
- Authors: Yichen Zhang and Feng Qiu and Tianqi Hong and Zhaoyu Wang and Fangxing
Li
- Abstract summary: Self-healing capability is one of the most critical factors for a resilient distribution system.
These agents should be equipped with a predesigned decision policy to meet real-time requirements.
In this paper, we propose the imitation learning (IL) framework to train such policies.
- Score: 4.634828363888443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-healing capability is one of the most critical factors for a resilient
distribution system, which requires intelligent agents to automatically perform
restorative actions online, including network reconfiguration and reactive
power dispatch. These agents should be equipped with a predesigned decision
policy to meet real-time requirements and handle highly complex $N-k$
scenarios. The disturbance randomness hampers the application of
exploration-dominant algorithms like traditional reinforcement learning (RL),
and the agent training problem under $N-k$ scenarios has not been thoroughly
solved. In this paper, we propose the imitation learning (IL) framework to
train such policies, where the agent will interact with an expert to learn its
optimal policy, and therefore significantly improve the training efficiency
compared with the RL methods. To handle tie-line operations and reactive power
dispatch simultaneously, we design a hybrid policy network for such a
discrete-continuous hybrid action space. We employ the 33-node system under
$N-k$ disturbances to verify the proposed framework.
Related papers
- Enhancing Spectrum Efficiency in 6G Satellite Networks: A GAIL-Powered Policy Learning via Asynchronous Federated Inverse Reinforcement Learning [67.95280175998792]
A novel adversarial imitation learning (GAIL)-powered policy learning approach is proposed for optimizing beamforming, spectrum allocation, and remote user equipment (RUE) association ins.
We employ inverse RL (IRL) to automatically learn reward functions without manual tuning.
We show that the proposed MA-AL method outperforms traditional RL approaches, achieving a $14.6%$ improvement in convergence and reward value.
arXiv Detail & Related papers (2024-09-27T13:05:02Z) - Adaptive $Q$-Network: On-the-fly Target Selection for Deep Reinforcement Learning [18.579378919155864]
We propose Adaptive $Q$Network (AdaQN) to take into account the non-stationarity of the optimization procedure without requiring additional samples.
AdaQN is theoretically sound and empirically validate it in MuJoCo control problems and Atari $2600 games.
arXiv Detail & Related papers (2024-05-25T11:57:43Z) - Intelligent Hybrid Resource Allocation in MEC-assisted RAN Slicing Network [72.2456220035229]
We aim to maximize the SSR for heterogeneous service demands in the cooperative MEC-assisted RAN slicing system.
We propose a recurrent graph reinforcement learning (RGRL) algorithm to intelligently learn the optimal hybrid RA policy.
arXiv Detail & Related papers (2024-05-02T01:36:13Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Distributed-Training-and-Execution Multi-Agent Reinforcement Learning
for Power Control in HetNet [48.96004919910818]
We propose a multi-agent deep reinforcement learning (MADRL) based power control scheme for the HetNet.
To promote cooperation among agents, we develop a penalty-based Q learning (PQL) algorithm for MADRL systems.
In this way, an agent's policy can be learned by other agents more easily, resulting in a more efficient collaboration process.
arXiv Detail & Related papers (2022-12-15T17:01:56Z) - Curriculum Based Reinforcement Learning of Grid Topology Controllers to
Prevent Thermal Cascading [0.19116784879310028]
This paper describes how domain knowledge of power system operators can be integrated into reinforcement learning frameworks.
A curriculum-based approach with reward tuning is incorporated into the training procedure by modifying the environment.
A parallel training approach on multiple scenarios is employed to avoid biasing the agent to a few scenarios and make it robust to the natural variability in grid operations.
arXiv Detail & Related papers (2021-12-18T20:32:05Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
Reinforcement learning (RL) has been widely investigated and shown to be a promising solution for decision-making and optimal control processes.
We propose an adaptive ADMM (asI-ADMM) algorithm and apply it to decentralized RL with edge-computing-empowered IIoT networks.
Experiment results show that our proposed algorithms outperform the state of the art in terms of communication costs and scalability, and can well adapt to complex IoT environments.
arXiv Detail & Related papers (2021-06-30T16:49:07Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
We introduce a hybrid placement solution based on Deep Reinforcement Learning (DRL) and a dedicated optimization based on the Power of Two Choices principle.
The proposed Heuristically-Assisted DRL (HA-DRL) allows to accelerate the learning process and gain in resource usage when compared against other state-of-the-art approaches.
arXiv Detail & Related papers (2021-05-14T10:04:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.