6G Networks: Beyond Shannon Towards Semantic and Goal-Oriented
Communications
- URL: http://arxiv.org/abs/2011.14844v3
- Date: Wed, 17 Feb 2021 08:38:38 GMT
- Title: 6G Networks: Beyond Shannon Towards Semantic and Goal-Oriented
Communications
- Authors: Emilio Calvanese Strinati and Sergio Barbarossa
- Abstract summary: 6G semantic networks can bring semantic learning mechanisms at the edge of the network.
Semantic learning can help 6G networks to improve their efficiency and sustainability.
- Score: 18.375641635746714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The goal of this paper is to promote the idea that including semantic and
goal-oriented aspects in future 6G networks can produce a significant leap
forward in terms of system effectiveness and sustainability. Semantic
communication goes beyond the common Shannon paradigm of guaranteeing the
correct reception of each single transmitted packet, irrespective of the
meaning conveyed by the packet. The idea is that, whenever communication occurs
to convey meaning or to accomplish a goal, what really matters is the impact
that the correct reception/interpretation of a packet is going to have on the
goal accomplishment. Focusing on semantic and goal-oriented aspects, and
possibly combining them, helps to identify the relevant information, i.e. the
information strictly necessary to recover the meaning intended by the
transmitter or to accomplish a goal. Combining knowledge representation and
reasoning tools with machine learning algorithms paves the way to build
semantic learning strategies enabling current machine learning algorithms to
achieve better interpretation capabilities and contrast adversarial attacks. 6G
semantic networks can bring semantic learning mechanisms at the edge of the
network and, at the same time, semantic learning can help 6G networks to
improve their efficiency and sustainability.
Related papers
- Dynamic Relative Representations for Goal-Oriented Semantic Communications [13.994922919058922]
semantic and effectiveness aspects of communications will play a fundamental role in 6G wireless networks.
In latent space communication, this challenge manifests as misalignment within high-dimensional representations where deep neural networks encode data.
This paper presents a novel framework for goal-oriented semantic communication, leveraging relative representations to mitigate semantic mismatches.
arXiv Detail & Related papers (2024-03-25T17:48:06Z) - Reasoning over the Air: A Reasoning-based Implicit Semantic-Aware
Communication Framework [124.6509194665514]
A novel implicit semantic-aware communication (iSAC) architecture is proposed for representing, communicating, and interpreting the implicit semantic meaning between source and destination users.
A projection-based semantic encoder is proposed to convert the high-dimensional graphical representation of explicit semantics into a low-dimensional semantic constellation space for efficient physical channel transmission.
A generative adversarial imitation learning-based solution, called G-RML, is proposed to enable the destination user to learn and imitate the implicit semantic reasoning process of source user.
arXiv Detail & Related papers (2023-06-20T01:32:27Z) - Disentangling Learnable and Memorizable Data via Contrastive Learning
for Semantic Communications [81.10703519117465]
A novel machine reasoning framework is proposed to disentangle source data so as to make it semantic-ready.
In particular, a novel contrastive learning framework is proposed, whereby instance and cluster discrimination are performed on the data.
Deep semantic clusters of highest confidence are considered learnable, semantic-rich data.
Our simulation results showcase the superiority of our contrastive learning approach in terms of semantic impact and minimalism.
arXiv Detail & Related papers (2022-12-18T12:00:12Z) - Less Data, More Knowledge: Building Next Generation Semantic
Communication Networks [180.82142885410238]
We present the first rigorous vision of a scalable end-to-end semantic communication network.
We first discuss how the design of semantic communication networks requires a move from data-driven networks towards knowledge-driven ones.
By using semantic representation and languages, we show that the traditional transmitter and receiver now become a teacher and apprentice.
arXiv Detail & Related papers (2022-11-25T19:03:25Z) - Imitation Learning-based Implicit Semantic-aware Communication Networks:
Multi-layer Representation and Collaborative Reasoning [68.63380306259742]
Despite its promising potential, semantic communications and semantic-aware networking are still at their infancy.
We propose a novel reasoning-based implicit semantic-aware communication network architecture that allows multiple tiers of CDC and edge servers to collaborate.
We introduce a new multi-layer representation of semantic information taking into consideration both the hierarchical structure of implicit semantics as well as the personalized inference preference of individual users.
arXiv Detail & Related papers (2022-10-28T13:26:08Z) - Beyond Transmitting Bits: Context, Semantics, and Task-Oriented
Communications [88.68461721069433]
Next generation systems can be potentially enriched by folding message semantics and goals of communication into their design.
This tutorial summarizes the efforts to date, starting from its early adaptations, semantic-aware and task-oriented communications.
The focus is on approaches that utilize information theory to provide the foundations, as well as the significant role of learning in semantics and task-aware communications.
arXiv Detail & Related papers (2022-07-19T16:00:57Z) - Neuro-Symbolic Artificial Intelligence (AI) for Intent based Semantic
Communication [85.06664206117088]
6G networks must consider semantics and effectiveness (at end-user) of the data transmission.
NeSy AI is proposed as a pillar for learning causal structure behind the observed data.
GFlowNet is leveraged for the first time in a wireless system to learn the probabilistic structure which generates the data.
arXiv Detail & Related papers (2022-05-22T07:11:57Z) - Learning Semantics: An Opportunity for Effective 6G Communications [8.262718096663077]
semantic communications are envisioned as a key enabler of future 6G networks.
This work explores the opportunity offered by semantic communications for beyond 5G networks.
We present and detail a novel architecture that enables representation learning of semantic symbols for effective semantic communications.
arXiv Detail & Related papers (2021-10-14T08:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.