Occlusion Guided Scene Flow Estimation on 3D Point Clouds
- URL: http://arxiv.org/abs/2011.14880v2
- Date: Mon, 19 Apr 2021 16:49:36 GMT
- Title: Occlusion Guided Scene Flow Estimation on 3D Point Clouds
- Authors: Bojun Ouyang, Dan Raviv
- Abstract summary: 3D scene flow estimation is a vital tool in perceiving our environment given depth or range sensors.
Here we propose a new scene flow architecture called OGSF-Net which tightly couples the learning for both flow and occlusions between frames.
Their coupled symbiosis results in a more accurate prediction of flow in space.
- Score: 4.518012967046983
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D scene flow estimation is a vital tool in perceiving our environment given
depth or range sensors. Unlike optical flow, the data is usually sparse and in
most cases partially occluded in between two temporal samplings. Here we
propose a new scene flow architecture called OGSF-Net which tightly couples the
learning for both flow and occlusions between frames. Their coupled symbiosis
results in a more accurate prediction of flow in space. Unlike a traditional
multi-action network, our unified approach is fused throughout the network,
boosting performances for both occlusion detection and flow estimation. Our
architecture is the first to gauge the occlusion in 3D scene flow estimation on
point clouds. In key datasets such as Flyingthings3D and KITTI, we achieve the
state-of-the-art results.
Related papers
- Regularizing Self-supervised 3D Scene Flows with Surface Awareness and Cyclic Consistency [3.124750429062221]
We introduce two new consistency losses that enlarge clusters while preventing them from spreading over distinct objects.
The proposed losses are model-independent and can thus be used in a plug-and-play fashion to significantly improve the performance of existing models.
We also showcase the effectiveness and generalization capability of our framework on four standard sensor-unique driving datasets.
arXiv Detail & Related papers (2023-12-12T11:00:39Z) - PointFlowHop: Green and Interpretable Scene Flow Estimation from
Consecutive Point Clouds [49.7285297470392]
An efficient 3D scene flow estimation method called PointFlowHop is proposed in this work.
PointFlowHop takes two consecutive point clouds and determines the 3D flow vectors for every point in the first point cloud.
It decomposes the scene flow estimation task into a set of subtasks, including ego-motion compensation, object association and object-wise motion estimation.
arXiv Detail & Related papers (2023-02-27T23:06:01Z) - OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object
Detection [51.153003057515754]
OPA-3D is a single-stage, end-to-end, Occlusion-Aware Pixel-Wise Aggregation network.
It jointly estimates dense scene depth with depth-bounding box residuals and object bounding boxes.
It outperforms state-of-the-art methods on the main Car category.
arXiv Detail & Related papers (2022-11-02T14:19:13Z) - What Matters for 3D Scene Flow Network [44.02710380584977]
3D scene flow estimation from point clouds is a low-level 3D motion perception task in computer vision.
We propose a novel all-to-all flow embedding layer with backward reliability validation during the initial scene flow estimation.
Our proposed model surpasses all existing methods by at least 38.2% on FlyingThings3D dataset and 24.7% on KITTI Scene Flow dataset for EPE3D metric.
arXiv Detail & Related papers (2022-07-19T09:27:05Z) - RCP: Recurrent Closest Point for Scene Flow Estimation on 3D Point
Clouds [44.034836961967144]
3D motion estimation including scene flow and point cloud registration has drawn increasing interest.
Recent methods employ deep neural networks to construct the cost volume for estimating accurate 3D flow.
We decompose the problem into two interlaced stages, where the 3D flows are optimized point-wisely at the first stage and then globally regularized in a recurrent network at the second stage.
arXiv Detail & Related papers (2022-05-23T04:04:30Z) - Residual 3D Scene Flow Learning with Context-Aware Feature Extraction [11.394559627312743]
We propose a novel context-aware set conv layer to exploit contextual structure information of Euclidean space.
We also propose an explicit residual flow learning structure in the residual flow refinement layer to cope with long-distance movement.
Our method achieves state-of-the-art performance, surpassing all other previous works to the best of our knowledge by at least 25%.
arXiv Detail & Related papers (2021-09-10T06:15:18Z) - SCTN: Sparse Convolution-Transformer Network for Scene Flow Estimation [71.2856098776959]
Estimating 3D motions for point clouds is challenging, since a point cloud is unordered and its density is significantly non-uniform.
We propose a novel architecture named Sparse Convolution-Transformer Network (SCTN) that equips the sparse convolution with the transformer.
We show that the learned relation-based contextual information is rich and helpful for matching corresponding points, benefiting scene flow estimation.
arXiv Detail & Related papers (2021-05-10T15:16:14Z) - FESTA: Flow Estimation via Spatial-Temporal Attention for Scene Point
Clouds [28.899804787744202]
Scene flow depicts the dynamics of a 3D scene, which is critical for various applications such as autonomous driving, robot navigation, AR/VR, etc.
It remains challenging to extract scene flow from point clouds due to sparsity and irregularity in typical point cloud sampling patterns.
A novel Spatial Abstraction with Attention (SA2) layer is proposed to alleviate the unstable abstraction problem.
A Temporal Abstraction with Attention (TA2) layer is proposed to rectify attention in temporal domain, leading to benefits with motions scaled in a larger range.
arXiv Detail & Related papers (2021-04-01T23:04:04Z) - Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks [87.50632573601283]
We present a novel method for multi-view depth estimation from a single video.
Our method achieves temporally coherent depth estimation results by using a novel Epipolar Spatio-Temporal (EST) transformer.
To reduce the computational cost, inspired by recent Mixture-of-Experts models, we design a compact hybrid network.
arXiv Detail & Related papers (2020-11-26T04:04:21Z) - FlowStep3D: Model Unrolling for Self-Supervised Scene Flow Estimation [87.74617110803189]
Estimating the 3D motion of points in a scene, known as scene flow, is a core problem in computer vision.
We present a recurrent architecture that learns a single step of an unrolled iterative alignment procedure for refining scene flow predictions.
arXiv Detail & Related papers (2020-11-19T23:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.