Trajformer: Trajectory Prediction with Local Self-Attentive Contexts for
Autonomous Driving
- URL: http://arxiv.org/abs/2011.14910v1
- Date: Mon, 30 Nov 2020 15:42:15 GMT
- Title: Trajformer: Trajectory Prediction with Local Self-Attentive Contexts for
Autonomous Driving
- Authors: Manoj Bhat, Jonathan Francis, Jean Oh
- Abstract summary: Self-attention enables better control over representing the agent's social context.
We show improvements on standard metrics over various baselines on the Argoverse dataset.
- Score: 13.861631911491651
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective feature-extraction is critical to models' contextual understanding,
particularly for applications to robotics and autonomous driving, such as
multimodal trajectory prediction. However, state-of-the-art generative methods
face limitations in representing the scene context, leading to predictions of
inadmissible futures. We alleviate these limitations through the use of
self-attention, which enables better control over representing the agent's
social context; we propose a local feature-extraction pipeline that produces
more salient information downstream, with improved parameter efficiency. We
show improvements on standard metrics (minADE, minFDE, DAO, DAC) over various
baselines on the Argoverse dataset. We release our code at:
https://github.com/Manojbhat09/Trajformer
Related papers
- Knowledge-aware Graph Transformer for Pedestrian Trajectory Prediction [15.454206825258169]
Predicting pedestrian motion trajectories is crucial for path planning and motion control of autonomous vehicles.
Recent deep learning-based prediction approaches mainly utilize information like trajectory history and interactions between pedestrians.
This paper proposes a graph transformer structure to improve prediction performance.
arXiv Detail & Related papers (2024-01-10T01:50:29Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Real-Time Motion Prediction via Heterogeneous Polyline Transformer with
Relative Pose Encoding [121.08841110022607]
Existing agent-centric methods have demonstrated outstanding performance on public benchmarks.
We introduce the K-nearest neighbor attention with relative pose encoding (KNARPE), a novel attention mechanism allowing the pairwise-relative representation to be used by Transformers.
By sharing contexts among agents and reusing the unchanged contexts, our approach is as efficient as scene-centric methods, while performing on par with state-of-the-art agent-centric methods.
arXiv Detail & Related papers (2023-10-19T17:59:01Z) - Efficient Baselines for Motion Prediction in Autonomous Driving [7.608073471097835]
Motion Prediction (MP) of multiple surroundings agents is a crucial task in arbitrarily complex environments.
We aim to develop compact models using State-Of-The-Art (SOTA) techniques for MP, including attention mechanisms and GNNs.
arXiv Detail & Related papers (2023-09-06T22:18:16Z) - Context-Aware Timewise VAEs for Real-Time Vehicle Trajectory Prediction [4.640835690336652]
We present ContextVAE, a context-aware approach for multi-modal vehicle trajectory prediction.
Our approach takes into account both the social features exhibited by agents on the scene and the physical environment constraints.
In all tested datasets, ContextVAE models are fast to train and provide high-quality multi-modal predictions in real-time.
arXiv Detail & Related papers (2023-02-21T18:42:24Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
We present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID)
We encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories.
Experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method.
arXiv Detail & Related papers (2022-03-25T16:59:08Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
Vehicle trajectory prediction tasks have been commonly tackled from two perspectives: knowledge-driven or data-driven.
In this paper, we propose to learn a "Realistic Residual Block" (RRB) which effectively connects these two perspectives.
Our proposed method outputs realistic predictions by confining the residual range and taking into account its uncertainty.
arXiv Detail & Related papers (2021-03-08T16:03:09Z) - Scenario-Transferable Semantic Graph Reasoning for Interaction-Aware
Probabilistic Prediction [29.623692599892365]
Accurately predicting the possible behaviors of traffic participants is an essential capability for autonomous vehicles.
We propose a novel generic representation for various driving environments by taking the advantage of semantics and domain knowledge.
arXiv Detail & Related papers (2020-04-07T00:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.