Improving Accuracy of Binary Neural Networks using Unbalanced Activation
Distribution
- URL: http://arxiv.org/abs/2012.00938v2
- Date: Tue, 30 Mar 2021 04:52:40 GMT
- Title: Improving Accuracy of Binary Neural Networks using Unbalanced Activation
Distribution
- Authors: Hyungjun Kim, Jihoon Park, Changhun Lee, Jae-Joon Kim
- Abstract summary: We show that unbalanced activation distribution can actually improve the accuracy of BNNs.
We also show that adjusting the threshold values of binary activation functions results in the unbalanced distribution of the binary activation.
Experimental results show that the accuracy of previous BNN models can be improved by simply shifting the threshold values of binary activation functions.
- Score: 12.46127622357824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Binarization of neural network models is considered as one of the promising
methods to deploy deep neural network models on resource-constrained
environments such as mobile devices. However, Binary Neural Networks (BNNs)
tend to suffer from severe accuracy degradation compared to the full-precision
counterpart model. Several techniques were proposed to improve the accuracy of
BNNs. One of the approaches is to balance the distribution of binary
activations so that the amount of information in the binary activations becomes
maximum. Based on extensive analysis, in stark contrast to previous work, we
argue that unbalanced activation distribution can actually improve the accuracy
of BNNs. We also show that adjusting the threshold values of binary activation
functions results in the unbalanced distribution of the binary activation,
which increases the accuracy of BNN models. Experimental results show that the
accuracy of previous BNN models (e.g. XNOR-Net and Bi-Real-Net) can be improved
by simply shifting the threshold values of binary activation functions without
requiring any other modification.
Related papers
- BiDense: Binarization for Dense Prediction [62.70804353158387]
BiDense is a generalized binary neural network (BNN) designed for efficient and accurate dense prediction tasks.
BiDense incorporates two key techniques: the Distribution-adaptive Binarizer (DAB) and the Channel-adaptive Full-precision Bypass (CFB)
arXiv Detail & Related papers (2024-11-15T16:46:04Z) - Compacting Binary Neural Networks by Sparse Kernel Selection [58.84313343190488]
This paper is motivated by a previously revealed phenomenon that the binary kernels in successful BNNs are nearly power-law distributed.
We develop the Permutation Straight-Through Estimator (PSTE) that is able to not only optimize the selection process end-to-end but also maintain the non-repetitive occupancy of selected codewords.
Experiments verify that our method reduces both the model size and bit-wise computational costs, and achieves accuracy improvements compared with state-of-the-art BNNs under comparable budgets.
arXiv Detail & Related papers (2023-03-25T13:53:02Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNs neglect the intrinsic bilinear relationship of real-valued weights and scale factors.
Our work is the first attempt to optimize BNNs from the bilinear perspective.
We obtain robust RBONNs, which show impressive performance over state-of-the-art BNNs on various models and datasets.
arXiv Detail & Related papers (2022-09-04T06:45:33Z) - Towards Accurate Binary Neural Networks via Modeling Contextual
Dependencies [52.691032025163175]
Existing Binary Neural Networks (BNNs) operate mainly on local convolutions with binarization function.
We present new designs of binary neural modules, which enables leading binary neural modules by a large margin.
arXiv Detail & Related papers (2022-09-03T11:51:04Z) - Bimodal Distributed Binarized Neural Networks [3.0778860202909657]
Binarization techniques, however, suffer from ineligible performance degradation compared to their full-precision counterparts.
We propose a Bi-Modal Distributed binarization method (methodname)
That imposes bi-modal distribution of the network weights by kurtosis regularization.
arXiv Detail & Related papers (2022-04-05T06:07:05Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - Self-Distribution Binary Neural Networks [18.69165083747967]
We study the binary neural networks (BNNs) of which both the weights and activations are binary (i.e., 1-bit representation)
We propose Self-Distribution Binary Neural Network (SD-BNN)
Experiments on CIFAR-10 and ImageNet datasets show that the proposed SD-BNN consistently outperforms the state-of-the-art (SOTA) BNNs.
arXiv Detail & Related papers (2021-03-03T13:39:52Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
We present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution.
Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.515% on BNNs.
Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods.
arXiv Detail & Related papers (2021-02-17T18:59:28Z) - BiSNN: Training Spiking Neural Networks with Binary Weights via Bayesian
Learning [37.376989855065545]
Spiking Neural Networks (SNNs) are biologically inspired, dynamic, event-driven models that enhance energy efficiency.
An SNN model is introduced that combines the benefits of temporally sparse binary activations and of binary weights.
Experiments validate the performance loss with respect to full-precision implementations.
arXiv Detail & Related papers (2020-12-15T14:06:36Z) - FTBNN: Rethinking Non-linearity for 1-bit CNNs and Going Beyond [23.5996182207431]
We show that binarized convolution process owns an increasing linearity towards the target of minimizing such error, which in turn hampers BNN's discriminative ability.
We re-investigate and tune proper non-linear modules to fix that contradiction, leading to a strong baseline which achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-10-19T08:11:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.