Meta-Cognition-Based Simple And Effective Approach To Object Detection
- URL: http://arxiv.org/abs/2012.01201v1
- Date: Wed, 2 Dec 2020 13:36:51 GMT
- Title: Meta-Cognition-Based Simple And Effective Approach To Object Detection
- Authors: Sannidhi P Kumar, Chandan Gautam, Suresh Sundaram
- Abstract summary: We explore a meta-cognitive learning strategy for object detection to improve generalization ability while at the same time maintaining detection speed.
The experimental results indicate an improvement in absolute precision of 2.6% (minimum), and 4.4% (maximum), with no overhead to inference time.
- Score: 4.68287703447406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, many researchers have attempted to improve deep learning-based
object detection models, both in terms of accuracy and operational speeds.
However, frequently, there is a trade-off between speed and accuracy of such
models, which encumbers their use in practical applications such as autonomous
navigation. In this paper, we explore a meta-cognitive learning strategy for
object detection to improve generalization ability while at the same time
maintaining detection speed. The meta-cognitive method selectively samples the
object instances in the training dataset to reduce overfitting. We use YOLO v3
Tiny as a base model for the work and evaluate the performance using the MS
COCO dataset. The experimental results indicate an improvement in absolute
precision of 2.6% (minimum), and 4.4% (maximum), with no overhead to inference
time.
Related papers
- Scale-Invariant Feature Disentanglement via Adversarial Learning for UAV-based Object Detection [18.11107031800982]
We propose to improve single-stage inference accuracy through learning scale-invariant features.
We apply our approach to three state-of-the-art lightweight detection frameworks on three benchmark datasets.
arXiv Detail & Related papers (2024-05-24T11:40:22Z) - Real-Time Object Detection in Occluded Environment with Background
Cluttering Effects Using Deep Learning [0.8192907805418583]
We concentrate on deep learning models for real-time detection of cars and tanks in an occluded environment with a cluttered background.
The developed method makes the custom dataset and employs a preprocessing technique to clean the noisy dataset.
The accuracy and frame per second of the SSD-Mobilenet v2 model are higher than YOLO V3 and YOLO V4.
arXiv Detail & Related papers (2024-01-02T01:30:03Z) - Mean-AP Guided Reinforced Active Learning for Object Detection [31.304039641225504]
This paper introduces Mean-AP Guided Reinforced Active Learning for Object Detection (MGRAL)
MGRAL is a novel approach that leverages the concept of expected model output changes as informativeness for deep detection networks.
Our approach demonstrates strong performance, establishing a new paradigm in reinforcement learning-based active learning for object detection.
arXiv Detail & Related papers (2023-10-12T14:59:22Z) - Fast and Accurate Object Detection on Asymmetrical Receptive Field [0.0]
This article proposes methods for improving object detection accuracy from the perspective of changing receptive fields.
The structure of the head part of YOLOv5 is modified by adding asymmetrical pooling layers.
The performances of the new model in this article are compared with original YOLOv5 model and analyzed from several parameters.
arXiv Detail & Related papers (2023-03-15T23:59:18Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
We propose a novel task, called generalized few-shot 3D object detection, where we have a large amount of training data for common (base) objects, but only a few data for rare (novel) classes.
Specifically, we analyze in-depth differences between images and point clouds, and then present a practical principle for the few-shot setting in the 3D LiDAR dataset.
To solve this task, we propose an incremental fine-tuning method to extend existing 3D detection models to recognize both common and rare objects.
arXiv Detail & Related papers (2023-02-08T07:11:36Z) - Rethinking Voxelization and Classification for 3D Object Detection [68.8204255655161]
The main challenge in 3D object detection from LiDAR point clouds is achieving real-time performance without affecting the reliability of the network.
We present a solution to improve network inference speed and precision at the same time by implementing a fast dynamic voxelizer.
In addition, we propose a lightweight detection sub-head model for classifying predicted objects and filter out false detected objects.
arXiv Detail & Related papers (2023-01-10T16:22:04Z) - Analysis of voxel-based 3D object detection methods efficiency for
real-time embedded systems [93.73198973454944]
Two popular voxel-based 3D object detection methods are studied in this paper.
Our experiments show that these methods mostly fail to detect distant small objects due to the sparsity of the input point clouds at large distances.
Our findings suggest that a considerable part of the computations of existing methods is focused on locations of the scene that do not contribute with successful detection.
arXiv Detail & Related papers (2021-05-21T12:40:59Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
We propose a neural network-based meta-learning method for supervised anomaly detection.
We experimentally demonstrate that the proposed method achieves better performance than existing anomaly detection and few-shot learning methods.
arXiv Detail & Related papers (2021-03-01T01:43:04Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
We propose a meta-learning approach that learns to reshape model gradients, such that information across incremental tasks is optimally shared.
In comparison to existing meta-learning methods, our approach is task-agnostic, allows incremental addition of new-classes and scales to high-capacity models for object detection.
arXiv Detail & Related papers (2020-03-17T13:40:00Z) - Frustratingly Simple Few-Shot Object Detection [98.42824677627581]
We find that fine-tuning only the last layer of existing detectors on rare classes is crucial to the few-shot object detection task.
Such a simple approach outperforms the meta-learning methods by roughly 220 points on current benchmarks.
arXiv Detail & Related papers (2020-03-16T00:29:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.