VisEvol: Visual Analytics to Support Hyperparameter Search through Evolutionary Optimization
- URL: http://arxiv.org/abs/2012.01205v4
- Date: Thu, 18 Apr 2024 16:23:23 GMT
- Title: VisEvol: Visual Analytics to Support Hyperparameter Search through Evolutionary Optimization
- Authors: Angelos Chatzimparmpas, Rafael M. Martins, Kostiantyn Kucher, Andreas Kerren,
- Abstract summary: During the training phase of machine learning (ML) models, it is usually necessary to configure several hyper parameters.
We present VisEvol, a visual analytics tool that supports interactive exploration of hyper parameters and intervention in this evolutionary procedure.
The utility and applicability of VisEvol are demonstrated with two use cases and interviews with ML experts who evaluated the effectiveness of the tool.
- Score: 4.237343083490243
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: During the training phase of machine learning (ML) models, it is usually necessary to configure several hyperparameters. This process is computationally intensive and requires an extensive search to infer the best hyperparameter set for the given problem. The challenge is exacerbated by the fact that most ML models are complex internally, and training involves trial-and-error processes that could remarkably affect the predictive result. Moreover, each hyperparameter of an ML algorithm is potentially intertwined with the others, and changing it might result in unforeseeable impacts on the remaining hyperparameters. Evolutionary optimization is a promising method to try and address those issues. According to this method, performant models are stored, while the remainder are improved through crossover and mutation processes inspired by genetic algorithms. We present VisEvol, a visual analytics tool that supports interactive exploration of hyperparameters and intervention in this evolutionary procedure. In summary, our proposed tool helps the user to generate new models through evolution and eventually explore powerful hyperparameter combinations in diverse regions of the extensive hyperparameter space. The outcome is a voting ensemble (with equal rights) that boosts the final predictive performance. The utility and applicability of VisEvol are demonstrated with two use cases and interviews with ML experts who evaluated the effectiveness of the tool.
Related papers
- An investigation on the use of Large Language Models for hyperparameter tuning in Evolutionary Algorithms [4.0998481751764]
We employ two open-source Large Language Models (LLMs) to analyze the optimization logs online.
We study our approach in the context of step-size adaptation for (1+1)-ES.
arXiv Detail & Related papers (2024-08-05T13:20:41Z) - Scaling Exponents Across Parameterizations and Optimizers [94.54718325264218]
We propose a new perspective on parameterization by investigating a key assumption in prior work.
Our empirical investigation includes tens of thousands of models trained with all combinations of threes.
We find that the best learning rate scaling prescription would often have been excluded by the assumptions in prior work.
arXiv Detail & Related papers (2024-07-08T12:32:51Z) - ETHER: Efficient Finetuning of Large-Scale Models with Hyperplane Reflections [59.839926875976225]
We propose the ETHER transformation family, which performs Efficient fineTuning via HypErplane Reflections.
In particular, we introduce ETHER and its relaxation ETHER+, which match or outperform existing PEFT methods with significantly fewer parameters.
arXiv Detail & Related papers (2024-05-30T17:26:02Z) - Deep Ranking Ensembles for Hyperparameter Optimization [9.453554184019108]
We present a novel method that meta-learns neural network surrogates optimized for ranking the configurations' performances while modeling their uncertainty via ensembling.
In a large-scale experimental protocol comprising 12 baselines, 16 HPO search spaces and 86 datasets/tasks, we demonstrate that our method achieves new state-of-the-art results in HPO.
arXiv Detail & Related papers (2023-03-27T13:52:40Z) - Multi-objective hyperparameter optimization with performance uncertainty [62.997667081978825]
This paper presents results on multi-objective hyperparameter optimization with uncertainty on the evaluation of Machine Learning algorithms.
We combine the sampling strategy of Tree-structured Parzen Estimators (TPE) with the metamodel obtained after training a Gaussian Process Regression (GPR) with heterogeneous noise.
Experimental results on three analytical test functions and three ML problems show the improvement over multi-objective TPE and GPR.
arXiv Detail & Related papers (2022-09-09T14:58:43Z) - Optimizing Training Trajectories in Variational Autoencoders via Latent
Bayesian Optimization Approach [0.0]
Unsupervised and semi-supervised ML methods have become widely adopted across multiple areas of physics, chemistry, and materials sciences.
We propose a latent Bayesian optimization (zBO) approach for the hyper parameter trajectory optimization for the unsupervised and semi-supervised ML.
We demonstrate an application of this method for finding joint discrete and continuous rotationally invariant representations for MNIST and experimental data of a plasmonic nanoparticles material system.
arXiv Detail & Related papers (2022-06-30T23:41:47Z) - Towards Learning Universal Hyperparameter Optimizers with Transformers [57.35920571605559]
We introduce the OptFormer, the first text-based Transformer HPO framework that provides a universal end-to-end interface for jointly learning policy and function prediction.
Our experiments demonstrate that the OptFormer can imitate at least 7 different HPO algorithms, which can be further improved via its function uncertainty estimates.
arXiv Detail & Related papers (2022-05-26T12:51:32Z) - HyP-ABC: A Novel Automated Hyper-Parameter Tuning Algorithm Using
Evolutionary Optimization [1.6114012813668934]
We propose HyP-ABC, an automatic hybrid hyper-parameter optimization algorithm using the modified artificial bee colony approach.
Compared to the state-of-the-art techniques, HyP-ABC is more efficient and has a limited number of parameters to be tuned.
arXiv Detail & Related papers (2021-09-11T16:45:39Z) - HyperNP: Interactive Visual Exploration of Multidimensional Projection
Hyperparameters [61.354362652006834]
HyperNP is a scalable method that allows for real-time interactive exploration of projection methods by training neural network approximations.
We evaluate the performance of the HyperNP across three datasets in terms of performance and speed.
arXiv Detail & Related papers (2021-06-25T17:28:14Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
We propose a new hyperparameter optimization method with zeroth-order hyper-gradients (HOZOG)
Specifically, we first formulate hyperparameter optimization as an A-based constrained optimization problem.
Then, we use the average zeroth-order hyper-gradients to update hyper parameters.
arXiv Detail & Related papers (2021-02-17T21:03:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.