Sequence Generation using Deep Recurrent Networks and Embeddings: A
study case in music
- URL: http://arxiv.org/abs/2012.01231v1
- Date: Wed, 2 Dec 2020 14:19:19 GMT
- Title: Sequence Generation using Deep Recurrent Networks and Embeddings: A
study case in music
- Authors: Sebastian Garcia-Valencia, Alejandro Betancourt, Juan G.
Lalinde-Pulido
- Abstract summary: This paper evaluates different types of memory mechanisms (memory cells) and analyses their performance in the field of music composition.
A set of quantitative metrics is presented to evaluate the performance of the proposed architecture automatically.
- Score: 69.2737664640826
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic generation of sequences has been a highly explored field in the
last years. In particular, natural language processing and automatic music
composition have gained importance due to the recent advances in machine
learning and Neural Networks with intrinsic memory mechanisms such as Recurrent
Neural Networks. This paper evaluates different types of memory mechanisms
(memory cells) and analyses their performance in the field of music
composition. The proposed approach considers music theory concepts such as
transposition, and uses data transformations (embeddings) to introduce semantic
meaning and improve the quality of the generated melodies. A set of
quantitative metrics is presented to evaluate the performance of the proposed
architecture automatically, measuring the tonality of the musical compositions.
Related papers
- A Survey of Music Generation in the Context of Interaction [3.6522809408725223]
Machine learning has been successfully used to compose and generate music, both melodies and polyphonic pieces.
Most of these models are not suitable for human-machine co-creation through live interaction.
arXiv Detail & Related papers (2024-02-23T12:41:44Z) - On the Relationship Between Variational Inference and Auto-Associative
Memory [68.8204255655161]
We study how different neural network approaches to variational inference can be applied in this framework.
We evaluate the obtained algorithms on the CIFAR10 and CLEVR image datasets and compare them with other associative memory models.
arXiv Detail & Related papers (2022-10-14T14:18:47Z) - Generating Lead Sheets with Affect: A Novel Conditional seq2seq
Framework [3.029434408969759]
We present a novel approach for calculating the positivity or negativity of a chord progression within a lead sheet.
Our approach is similar to a Neural Machine Translation (NMT) problem, as we include high-level conditions in the encoder part of the sequence-to-sequence architectures.
The proposed strategy is able to generate lead sheets in a controllable manner, resulting in distributions of musical attributes similar to those of the training dataset.
arXiv Detail & Related papers (2021-04-27T09:04:21Z) - A framework to compare music generative models using automatic
evaluation metrics extended to rhythm [69.2737664640826]
This paper takes the framework proposed in a previous research that did not consider rhythm to make a series of design decisions, then, rhythm support is added to evaluate the performance of two RNN memory cells in the creation of monophonic music.
The model considers the handling of music transposition and the framework evaluates the quality of the generated pieces using automatic quantitative metrics based on geometry which have rhythm support added as well.
arXiv Detail & Related papers (2021-01-19T15:04:46Z) - Understanding the Role of Individual Units in a Deep Neural Network [85.23117441162772]
We present an analytic framework to systematically identify hidden units within image classification and image generation networks.
First, we analyze a convolutional neural network (CNN) trained on scene classification and discover units that match a diverse set of object concepts.
Second, we use a similar analytic method to analyze a generative adversarial network (GAN) model trained to generate scenes.
arXiv Detail & Related papers (2020-09-10T17:59:10Z) - Score-informed Networks for Music Performance Assessment [64.12728872707446]
Deep neural network-based methods incorporating score information into MPA models have not yet been investigated.
We introduce three different models capable of score-informed performance assessment.
arXiv Detail & Related papers (2020-08-01T07:46:24Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
We propose a novel incrementally trained recurrent architecture targeting explicitly multi-scale learning.
We show how to extend the architecture of a simple RNN by separating its hidden state into different modules.
We discuss a training algorithm where new modules are iteratively added to the model to learn progressively longer dependencies.
arXiv Detail & Related papers (2020-06-29T08:35:49Z) - Music Generation with Temporal Structure Augmentation [0.0]
The proposed method augments a connectionist generation model with count-down to song conclusion and meter markers as extra input features.
An RNN architecture with LSTM cells is trained on the Nottingham folk music dataset in a supervised sequence learning setup.
Experiments show an improved prediction performance for both types of annotation.
arXiv Detail & Related papers (2020-04-21T19:19:58Z) - From Artificial Neural Networks to Deep Learning for Music Generation --
History, Concepts and Trends [0.0]
This paper provides a tutorial on music generation based on deep learning techniques.
It analyzes some early works from the late 1980s using artificial neural networks for music generation.
arXiv Detail & Related papers (2020-04-07T00:33:56Z) - Modeling Musical Structure with Artificial Neural Networks [0.0]
I explore the application of artificial neural networks to different aspects of musical structure modeling.
I show how a connectionist model, the Gated Autoencoder (GAE), can be employed to learn transformations between musical fragments.
I propose a special predictive training of the GAE, which yields a representation of polyphonic music as a sequence of intervals.
arXiv Detail & Related papers (2020-01-06T18:35:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.