Cognitive Capabilities for the CAAI in Cyber-Physical Production Systems
- URL: http://arxiv.org/abs/2012.01823v1
- Date: Thu, 3 Dec 2020 10:55:56 GMT
- Title: Cognitive Capabilities for the CAAI in Cyber-Physical Production Systems
- Authors: Jan Strohschein, Andreas Fischbach, Andreas Bunte, Heide
Faeskorn-Woyke, Natalia Moriz, Thomas Bartz-Beielstein
- Abstract summary: This paper presents the cognitive module of the cognitive architecture for artificial intelligence (CAAI) in cyber-physical production systems ( CPPS)
Declarative user goals and the provided algorithm-knowledge base allow the dynamic pipeline orchestration and configuration.
A big data platform (BDP) instantiates the pipelines and monitors the CPPS performance for further evaluation.
- Score: 2.348805691644086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents the cognitive module of the cognitive architecture for
artificial intelligence (CAAI) in cyber-physical production systems (CPPS). The
goal of this architecture is to reduce the implementation effort of artificial
intelligence (AI) algorithms in CPPS. Declarative user goals and the provided
algorithm-knowledge base allow the dynamic pipeline orchestration and
configuration. A big data platform (BDP) instantiates the pipelines and
monitors the CPPS performance for further evaluation through the cognitive
module. Thus, the cognitive module is able to select feasible and robust
configurations for process pipelines in varying use cases. Furthermore, it
automatically adapts the models and algorithms based on model quality and
resource consumption. The cognitive module also instantiates additional
pipelines to test algorithms from different classes. CAAI relies on
well-defined interfaces to enable the integration of additional modules and
reduce implementation effort. Finally, an implementation based on Docker,
Kubernetes, and Kafka for the virtualization and orchestration of the
individual modules and as messaging-technology for module communication is used
to evaluate a real-world use case.
Related papers
- AI-Aided Kalman Filters [65.35350122917914]
The Kalman filter (KF) and its variants are among the most celebrated algorithms in signal processing.
Recent developments illustrate the possibility of fusing deep neural networks (DNNs) with classic Kalman-type filtering.
This article provides a tutorial-style overview of design approaches for incorporating AI in aiding KF-type algorithms.
arXiv Detail & Related papers (2024-10-16T06:47:53Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - PDSketch: Integrated Planning Domain Programming and Learning [86.07442931141637]
We present a new domain definition language, named PDSketch.
It allows users to flexibly define high-level structures in the transition models.
Details of the transition model will be filled in by trainable neural networks.
arXiv Detail & Related papers (2023-03-09T18:54:12Z) - Neural Attentive Circuits [93.95502541529115]
We introduce a general purpose, yet modular neural architecture called Neural Attentive Circuits (NACs)
NACs learn the parameterization and a sparse connectivity of neural modules without using domain knowledge.
NACs achieve an 8x speedup at inference time while losing less than 3% performance.
arXiv Detail & Related papers (2022-10-14T18:00:07Z) - A unified software/hardware scalable architecture for brain-inspired
computing based on self-organizing neural models [6.072718806755325]
We develop an original brain-inspired neural model associating Self-Organizing Maps (SOM) and Hebbian learning in the Reentrant SOM (ReSOM) model.
This work also demonstrates the distributed and scalable nature of the model through both simulation results and hardware execution on a dedicated FPGA-based platform.
arXiv Detail & Related papers (2022-01-06T22:02:19Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Modular approach to data preprocessing in ALOHA and application to a
smart industry use case [0.0]
The paper addresses a modular approach, integrated into the ALOHA tool flow, to support the data preprocessing and transformation pipeline.
To demonstrate the effectiveness of the approach, we present some experimental results related to a keyword spotting use case.
arXiv Detail & Related papers (2021-02-02T06:48:51Z) - Deploying deep learning in OpenFOAM with TensorFlow [2.1874189959020423]
This module is constructed with the C API and is integrated into OpenFOAM as an application that may be linked at run time.
Notably, our formulation precludes any restrictions related to the type of neural network architecture.
In addition, the proposed module outlines a path towards an open-source, unified and transparent framework for computational fluid dynamics and machine learning.
arXiv Detail & Related papers (2020-12-01T23:59:30Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
Reuse is a common system architecture approach that seeks to instantiate a system architecture with existing components.
There is currently no framework that guides the selection of necessary information to assess their portability to operate in a system different than the one for which the component was originally purposed.
We present ongoing work on establishing an interface description template that captures the main information of an AI-enabled component.
arXiv Detail & Related papers (2020-07-13T20:30:26Z) - CAAI -- A Cognitive Architecture to Introduce Artificial Intelligence in
Cyber-Physical Production Systems [1.5701326192371183]
CAAI is a cognitive architecture for artificial intelligence in cyber-physical production systems.
The core of CAAI is a cognitive module that processes declarative goals of the user.
Constant observation and evaluation against performance criteria assess the performance of pipelines.
arXiv Detail & Related papers (2020-02-26T16:27:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.