Computational characteristics of feedforward neural networks for solving
a stiff differential equation
- URL: http://arxiv.org/abs/2012.01867v2
- Date: Tue, 30 Nov 2021 14:14:13 GMT
- Title: Computational characteristics of feedforward neural networks for solving
a stiff differential equation
- Authors: Toni Schneidereit and Michael Breu{\ss}
- Abstract summary: We study the solution of a simple but fundamental stiff ordinary differential equation modelling a damped system.
We show that it is possible to identify preferable choices to be made for parameters and methods.
Overall we extend the current literature in the field by showing what can be done in order to obtain reliable and accurate results by the neural network approach.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feedforward neural networks offer a promising approach for solving
differential equations. However, the reliability and accuracy of the
approximation still represent delicate issues that are not fully resolved in
the current literature. Computational approaches are in general highly
dependent on a variety of computational parameters as well as on the choice of
optimisation methods, a point that has to be seen together with the structure
of the cost function. The intention of this paper is to make a step towards
resolving these open issues. To this end we study here the solution of a simple
but fundamental stiff ordinary differential equation modelling a damped system.
We consider two computational approaches for solving differential equations by
neural forms. These are the classic but still actual method of trial solutions
defining the cost function, and a recent direct construction of the cost
function related to the trial solution method. Let us note that the settings we
study can easily be applied more generally, including solution of partial
differential equations. By a very detailed computational study we show that it
is possible to identify preferable choices to be made for parameters and
methods. We also illuminate some interesting effects that are observable in the
neural network simulations. Overall we extend the current literature in the
field by showing what can be done in order to obtain reliable and accurate
results by the neural network approach. By doing this we illustrate the
importance of a careful choice of the computational setup.
Related papers
- Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
Physics-informed neural networks (PINNs) are a new tool for solving boundary value problems.
Recent investigations have shown that when designing loss functions for many engineering problems, using first-order derivatives and combining equations from both strong and weak forms can lead to much better accuracy.
In this work, we propose applying the mixed formulation to solve multi-physical problems, specifically a stationary thermo-mechanically coupled system of equations.
arXiv Detail & Related papers (2023-02-09T21:56:59Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Adaptive neural domain refinement for solving time-dependent
differential equations [0.0]
A classic approach for solving differential equations with neural networks builds upon neural forms, which employ the differential equation with a discretisation of the solution domain.
It would be desirable to transfer such important and successful strategies to the field of neural network based solutions.
We propose a novel adaptive neural approach to meet this aim for solving time-dependent problems.
arXiv Detail & Related papers (2021-12-23T13:19:07Z) - Conditional physics informed neural networks [85.48030573849712]
We introduce conditional PINNs (physics informed neural networks) for estimating the solution of classes of eigenvalue problems.
We show that a single deep neural network can learn the solution of partial differential equations for an entire class of problems.
arXiv Detail & Related papers (2021-04-06T18:29:14Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
We investigate how the variability in solvers' space can improve neural ODEs performance.
We show that the right choice of solver parameterization can significantly affect neural ODEs models in terms of robustness to adversarial attacks.
arXiv Detail & Related papers (2021-03-15T17:26:34Z) - Deep neural network for solving differential equations motivated by
Legendre-Galerkin approximation [16.64525769134209]
We explore the performance and accuracy of various neural architectures on both linear and nonlinear differential equations.
We implement a novel Legendre-Galerkin Deep Neural Network (LGNet) algorithm to predict solutions to differential equations.
arXiv Detail & Related papers (2020-10-24T20:25:09Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
We formulate a new neural operator by parameterizing the integral kernel directly in Fourier space.
We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation.
It is up to three orders of magnitude faster compared to traditional PDE solvers.
arXiv Detail & Related papers (2020-10-18T00:34:21Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Unsupervised Learning of Solutions to Differential Equations with
Generative Adversarial Networks [1.1470070927586016]
We develop a novel method for solving differential equations with unsupervised neural networks.
We show that our method, which we call Differential Equation GAN (DEQGAN), can obtain multiple orders of magnitude lower mean squared errors.
arXiv Detail & Related papers (2020-07-21T23:36:36Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.