Context in Informational Bias Detection
- URL: http://arxiv.org/abs/2012.02015v1
- Date: Thu, 3 Dec 2020 15:50:20 GMT
- Title: Context in Informational Bias Detection
- Authors: Esther van den Berg and Katja Markert
- Abstract summary: We explore four kinds of context for informational bias in English news articles.
We find that integrating event context improves classification performance over a very strong baseline.
We find that the best-performing context-inclusive model outperforms the baseline on longer sentences.
- Score: 4.386026071380442
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Informational bias is bias conveyed through sentences or clauses that provide
tangential, speculative or background information that can sway readers'
opinions towards entities. By nature, informational bias is context-dependent,
but previous work on informational bias detection has not explored the role of
context beyond the sentence. In this paper, we explore four kinds of context
for informational bias in English news articles: neighboring sentences, the
full article, articles on the same event from other news publishers, and
articles from the same domain (but potentially different events). We find that
integrating event context improves classification performance over a very
strong baseline. In addition, we perform the first error analysis of models on
this task. We find that the best-performing context-inclusive model outperforms
the baseline on longer sentences, and sentences from politically centrist
articles.
Related papers
- Data-Augmented and Retrieval-Augmented Context Enrichment in Chinese
Media Bias Detection [16.343223974292908]
We build a dataset with Chinese news reports about COVID-19 which is annotated by our newly designed system.
In Data-Augmented Context Enrichment (DACE), we enlarge the training data; while in Retrieval-Augmented Context Enrichment (RACE), we improve information retrieval methods to select valuable information.
Our results show that both methods outperform our baselines, while the RACE methods are more efficient and have more potential.
arXiv Detail & Related papers (2023-11-02T16:29:49Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
This paper investigates the challenges of building scalable NLP systems for discovering patterns of media selection biases directly from news content in massive-scale news corpora.
We show the capabilities of the framework through a case study on NELA-2020, a corpus of 1.8M news articles in English from 519 news sources worldwide.
arXiv Detail & Related papers (2023-04-06T23:36:45Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
We build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases.
We found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions.
Analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
arXiv Detail & Related papers (2023-01-14T18:58:42Z) - Neural Media Bias Detection Using Distant Supervision With BABE -- Bias
Annotations By Experts [24.51774048437496]
This paper presents BABE, a robust and diverse data set for media bias research.
It consists of 3,700 sentences balanced among topics and outlets, containing media bias labels on the word and sentence level.
Based on our data, we also introduce a way to detect bias-inducing sentences in news articles automatically.
arXiv Detail & Related papers (2022-09-29T05:32:55Z) - NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias [54.89737992911079]
We propose a new task, a neutral summary generation from multiple news headlines of the varying political spectrum.
One of the most interesting observations is that generation models can hallucinate not only factually inaccurate or unverifiable content, but also politically biased content.
arXiv Detail & Related papers (2022-04-11T07:06:01Z) - Modeling Multi-level Context for Informational Bias Detection by
Contrastive Learning and Sentential Graph Network [13.905580921329717]
Informational bias can only be detected together with the context.
In this paper, we integrate three levels of context to detect the sentence-level informational bias in English news articles.
Our model, MultiCTX, uses contrastive learning and sentence graphs together with Graph Attention Network (GAT) to encode these three degrees of context.
arXiv Detail & Related papers (2022-01-25T15:07:09Z) - On the Language Coverage Bias for Neural Machine Translation [81.81456880770762]
Language coverage bias is important for neural machine translation (NMT) because the target-original training data is not well exploited in current practice.
By carefully designing experiments, we provide comprehensive analyses of the language coverage bias in the training data.
We propose two simple and effective approaches to alleviate the language coverage bias problem.
arXiv Detail & Related papers (2021-06-07T01:55:34Z) - "Don't quote me on that": Finding Mixtures of Sources in News Articles [85.92467549469147]
We construct an ontological labeling system for sources based on each source's textitaffiliation and textitrole
We build a probabilistic model to infer these attributes for named sources and to describe news articles as mixtures of these sources.
arXiv Detail & Related papers (2021-04-19T21:57:11Z) - Improving Robustness by Augmenting Training Sentences with
Predicate-Argument Structures [62.562760228942054]
Existing approaches to improve robustness against dataset biases mostly focus on changing the training objective.
We propose to augment the input sentences in the training data with their corresponding predicate-argument structures.
We show that without targeting a specific bias, our sentence augmentation improves the robustness of transformer models against multiple biases.
arXiv Detail & Related papers (2020-10-23T16:22:05Z) - Analyzing Political Bias and Unfairness in News Articles at Different
Levels of Granularity [35.19976910093135]
The research presented in this paper addresses not only the automatic detection of bias but goes one step further in that it explores how political bias and unfairness are manifested linguistically.
We utilize a new corpus of 6964 news articles with labels derived from adfontesmedia.com and develop a neural model for bias assessment.
arXiv Detail & Related papers (2020-10-20T22:25:00Z) - Detecting Media Bias in News Articles using Gaussian Bias Distributions [35.19976910093135]
We study how second-order information about biased statements in an article helps to improve detection effectiveness.
On an existing media bias dataset, we find that the frequency and positions of biased statements strongly impact article-level bias.
Using a standard model for sentence-level bias detection, we provide empirical evidence that article-level bias detectors that use second-order information clearly outperform those without.
arXiv Detail & Related papers (2020-10-20T22:20:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.