Building manifolds from quantum codes
- URL: http://arxiv.org/abs/2012.02249v3
- Date: Mon, 24 May 2021 23:47:23 GMT
- Title: Building manifolds from quantum codes
- Authors: Michael Freedman and Matthew B. Hastings
- Abstract summary: We construct the first examples of power law $mathbbZ$ systolic freedom.
We give an efficient randomized algorithm to construct a weakly fundamental cycle basis for a graph.
We use this result to trivialize the fundamental group of the manifold we construct.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We give a procedure for "reverse engineering" a closed, simply connected,
Riemannian manifold with bounded local geometry from a sparse chain complex
over $\mathbb{Z}$. Applying this procedure to chain complexes obtained by
"lifting" recently developed quantum codes, which correspond to chain complexes
over $\mathbb{Z}_2$, we construct the first examples of power law
$\mathbb{Z}_2$ systolic freedom.
As a result that may be of independent interest in graph theory, we give an
efficient randomized algorithm to construct a weakly fundamental cycle basis
for a graph, such that each edge appears only polylogarithmically times in the
basis. We use this result to trivialize the fundamental group of the manifold
we construct.
Related papers
- A unified approach to quantum de Finetti theorems and SoS rounding via geometric quantization [0.0]
We study a connection between a Hermitian version of the SoS hierarchy, related to the quantum de Finetti theorem.
We show that previously known HSoS rounding algorithms can be recast as quantizing an objective function.
arXiv Detail & Related papers (2024-11-06T17:09:28Z) - Geometric structure and transversal logic of quantum Reed-Muller codes [51.11215560140181]
In this paper, we aim to characterize the gates of quantum Reed-Muller (RM) codes by exploiting the well-studied properties of their classical counterparts.
A set of stabilizer generators for a RM code can be described via $X$ and $Z$ operators acting on subcubes of particular dimensions.
arXiv Detail & Related papers (2024-10-10T04:07:24Z) - Efficient Unitary T-designs from Random Sums [0.6640968473398456]
Unitary $T$-designs play an important role in quantum information, with diverse applications in quantum algorithms, benchmarking, tomography, and communication.
We provide a new construction of $T$-designs via random matrix theory using $tildeO(T2 n2)$ quantum gates.
arXiv Detail & Related papers (2024-02-14T17:32:30Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Upper bounds for Grothendieck constants, quantum correlation matrices
and CCP functions [0.0]
We search for the still unknown exact value of the real and complex Grothendieck constant $K_GmathbbF$ in the famous Grothendieck inequality (unsolved since 1953)
We also recover all famous upper bounds of Grothendieck himself ($K_GmathbbR leq sinh(pi/2) approx 2.301$), Krivine ($K_GmathbbR leq fracpi2 ln (1 + sqrt2)
arXiv Detail & Related papers (2023-05-08T02:43:01Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
Simplicial complexes can be viewed as high dimensional generalizations of graphs that explicitly encode multi-way ordered relations.
We propose a graph convolutional model for learning functions parametrized by the $k$-homological features of simplicial complexes.
arXiv Detail & Related papers (2021-10-28T14:59:41Z) - Annihilating Entanglement Between Cones [77.34726150561087]
We show that Lorentz cones are the only cones with a symmetric base for which a certain stronger version of the resilience property is satisfied.
Our proof exploits the symmetries of the Lorentz cones and applies two constructions resembling protocols for entanglement distillation.
arXiv Detail & Related papers (2021-10-22T15:02:39Z) - Circuit Complexity in $\mathcal{Z}_{2}$ ${\cal EEFT}$ [1.3177888879666482]
We computation circuit complexity in $mathcalZ$ Even Effective Field Theories.
We consider a massive free field theory with higher-order Wilsonian operators.
The study has been carried out for nearly Gaussian states.
arXiv Detail & Related papers (2021-09-20T18:00:04Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Quantum information theory and Fourier multipliers on quantum groups [0.0]
We compute the exact values of the minimum output entropy and the completely bounded minimal entropy of quantum channels acting on matrix algebras.
Our results use a new and precise description of bounded Fourier multipliers from $mathrmL1(mathbbG)$ into $mathrmLp(mathbbG)$ for $1 p leq infty$ where $mathbbG$ is a co-amenable locally compact quantum group.
arXiv Detail & Related papers (2020-08-27T09:47:10Z) - A refinement of Reznick's Positivstellensatz with applications to
quantum information theory [72.8349503901712]
In Hilbert's 17th problem Artin showed that any positive definite in several variables can be written as the quotient of two sums of squares.
Reznick showed that the denominator in Artin's result can always be chosen as an $N$-th power of the squared norm of the variables.
arXiv Detail & Related papers (2019-09-04T11:46:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.