Detecting Video Game Player Burnout with the Use of Sensor Data and
Machine Learning
- URL: http://arxiv.org/abs/2012.02299v1
- Date: Sun, 29 Nov 2020 21:16:09 GMT
- Title: Detecting Video Game Player Burnout with the Use of Sensor Data and
Machine Learning
- Authors: Anton Smerdov, Andrey Somov, Evgeny Burnaev, Bo Zhou, Paul Lukowicz
- Abstract summary: We propose the methods based on the sensor data analysis for predicting whether a player will win the future encounter.
The sensor data were collected from 10 participants in 22 matches in League of Legends video game.
We have trained machine learning models including Transformer and Gated Recurrent Unit to predict whether the player wins the encounter taking place after some fixed time in the future.
- Score: 15.838305794790022
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current research in eSports lacks the tools for proper game practising and
performance analytics. The majority of prior work relied only on in-game data
for advising the players on how to perform better. However, in-game mechanics
and trends are frequently changed by new patches limiting the lifespan of the
models trained exclusively on the in-game logs. In this article, we propose the
methods based on the sensor data analysis for predicting whether a player will
win the future encounter. The sensor data were collected from 10 participants
in 22 matches in League of Legends video game. We have trained machine learning
models including Transformer and Gated Recurrent Unit to predict whether the
player wins the encounter taking place after some fixed time in the future. For
10 seconds forecasting horizon Transformer neural network architecture achieves
ROC AUC score 0.706. This model is further developed into the detector capable
of predicting that a player will lose the encounter occurring in 10 seconds in
88.3% of cases with 73.5% accuracy. This might be used as a players' burnout or
fatigue detector, advising players to retreat. We have also investigated which
physiological features affect the chance to win or lose the next in-game
encounter.
Related papers
- Passing Heatmap Prediction Based on Transformer Model and Tracking Data [0.0]
This research presents a novel deep-learning network architecture which is capable to predict the potential end location of passes.
Once analysed more than 28,000 pass events, a robust prediction can be achieved with more than 0.7 Top-1 accuracy.
And based on the prediction, a better understanding of the pitch control and pass option could be reached to measure players' off-ball movement contribution to defensive performance.
arXiv Detail & Related papers (2023-09-04T11:14:22Z) - Understanding why shooters shoot -- An AI-powered engine for basketball
performance profiling [70.54015529131325]
Basketball is dictated by many variables, such as playstyle and game dynamics.
It is crucial that the performance profiles can reflect the diverse playstyles.
We present a tool that can visualize player performance profiles in a timely manner.
arXiv Detail & Related papers (2023-03-17T01:13:18Z) - Impact of a Batter in ODI Cricket Implementing Regression Models from
Match Commentary [0.0]
This paper seeks to understand the conundrum behind this impactful performance by determining how much control a player has over the circumstances.
We collected data for the entire One Day International career of 3 prominent cricket players: Rohit G Sharma, David A Warner, and Kane S Williamson.
We used Multiple Linear Regression (MLR), Polynomial Regression, Support Vector Regression (SVR), Decision Tree Regression, and Random Forest Regression on each player's data individually to train them and predict the Impact the player will have on the game.
arXiv Detail & Related papers (2023-02-22T06:42:20Z) - Combining Sequential and Aggregated Data for Churn Prediction in Casual
Freemium Games [0.0]
In freemium games, the revenue from a player comes from the in-app purchases made and the advertisement to which that player is exposed.
Within this scenario, it is extremely important to be able to detect promptly when a player is about to quit playing.
We investigate how to improve the current state-of-the-art in churn prediction by combining sequential and aggregate data.
arXiv Detail & Related papers (2022-09-06T14:49:18Z) - Collusion Detection in Team-Based Multiplayer Games [57.153233321515984]
We propose a system that detects colluding behaviors in team-based multiplayer games.
The proposed method analyzes the players' social relationships paired with their in-game behavioral patterns.
We then automate the detection using Isolation Forest, an unsupervised learning technique specialized in highlighting outliers.
arXiv Detail & Related papers (2022-03-10T02:37:39Z) - CommonsenseQA 2.0: Exposing the Limits of AI through Gamification [126.85096257968414]
We construct benchmarks that test the abilities of modern natural language understanding models.
In this work, we propose gamification as a framework for data construction.
arXiv Detail & Related papers (2022-01-14T06:49:15Z) - Less is More: Sparse Sampling for Dense Reaction Predictions [60.005266111509435]
We present our method for 2021 Evoked Expression from Videos Challenge.
Our model utilizes both audio and image modalities as inputs to predict emotion changes of viewers.
The proposed method has achieved pearson's correlation score of 0.04430 on the final private test set.
arXiv Detail & Related papers (2021-06-03T11:33:59Z) - AI-enabled Prediction of eSports Player Performance Using the Data from
Heterogeneous Sensors [12.071865017583502]
We report on an Artificial Intelligence (AI) enabled solution for predicting the eSports player in-game performance using exclusively the data from sensors.
The player performance is assessed from the game logs in a multiplayer game for each moment of time using a recurrent neural network.
The proposed solution has a number of promising applications for Pro eSports teams as well as a learning tool for amateur players.
arXiv Detail & Related papers (2020-12-07T07:31:53Z) - Collection and Validation of Psychophysiological Data from Professional
and Amateur Players: a Multimodal eSports Dataset [7.135992354416602]
We present a dataset collected from professional and amateur teams in League of Legends video game with more than 40 hours of recordings.
Recordings include the players' physiological activity, movements, pulse, saccades, obtained from various sensors.
An important feature of the dataset is simultaneous data collection from five players, which facilitates the analysis of sensor data on a team level.
arXiv Detail & Related papers (2020-11-02T13:25:11Z) - Interpretable Real-Time Win Prediction for Honor of Kings, a Popular
Mobile MOBA Esport [51.20042288437171]
We propose a Two-Stage Spatial-Temporal Network (TSSTN) that can provide accurate real-time win predictions.
Experiment results and applications in real-world live streaming scenarios showed that the proposed TSSTN model is effective both in prediction accuracy and interpretability.
arXiv Detail & Related papers (2020-08-14T12:00:58Z) - Disentangling Controllable Object through Video Prediction Improves
Visual Reinforcement Learning [82.25034245150582]
In many vision-based reinforcement learning problems, the agent controls a movable object in its visual field.
We propose an end-to-end learning framework to disentangle the controllable object from the observation signal.
The disentangled representation is shown to be useful for RL as additional observation channels to the agent.
arXiv Detail & Related papers (2020-02-21T05:43:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.