Probabilistic Tracklet Scoring and Inpainting for Multiple Object
Tracking
- URL: http://arxiv.org/abs/2012.02337v2
- Date: Thu, 10 Dec 2020 04:11:29 GMT
- Title: Probabilistic Tracklet Scoring and Inpainting for Multiple Object
Tracking
- Authors: Fatemeh Saleh, Sadegh Aliakbarian, Hamid Rezatofighi, Mathieu
Salzmann, Stephen Gould
- Abstract summary: We introduce a probabilistic autoregressive motion model to score tracklet proposals.
This is achieved by training our model to learn the underlying distribution of natural tracklets.
Our experiments demonstrate the superiority of our approach at tracking objects in challenging sequences.
- Score: 83.75789829291475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the recent advances in multiple object tracking (MOT), achieved by
joint detection and tracking, dealing with long occlusions remains a challenge.
This is due to the fact that such techniques tend to ignore the long-term
motion information. In this paper, we introduce a probabilistic autoregressive
motion model to score tracklet proposals by directly measuring their
likelihood. This is achieved by training our model to learn the underlying
distribution of natural tracklets. As such, our model allows us not only to
assign new detections to existing tracklets, but also to inpaint a tracklet
when an object has been lost for a long time, e.g., due to occlusion, by
sampling tracklets so as to fill the gap caused by misdetections. Our
experiments demonstrate the superiority of our approach at tracking objects in
challenging sequences; it outperforms the state of the art in most standard MOT
metrics on multiple MOT benchmark datasets, including MOT16, MOT17, and MOT20.
Related papers
- MambaTrack: A Simple Baseline for Multiple Object Tracking with State Space Model [18.607106274732885]
We introduce a Mamba-based motion model named Mamba moTion Predictor (MTP)
MTP takes the spatial-temporal location dynamics of objects as input, captures the motion pattern using a bi-Mamba encoding layer, and predicts the next motion.
Our proposed tracker, MambaTrack, demonstrates advanced performance on benchmarks such as Dancetrack and SportsMOT.
arXiv Detail & Related papers (2024-08-17T11:58:47Z) - Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
Joint Detection and Embedding (JDE) trackers have demonstrated excellent performance in Multi-Object Tracking (MOT) tasks.
Our tracker, named TCBTrack, achieves state-of-the-art performance on multiple public benchmarks.
arXiv Detail & Related papers (2024-07-19T07:48:45Z) - TrajectoryFormer: 3D Object Tracking Transformer with Predictive
Trajectory Hypotheses [51.60422927416087]
3D multi-object tracking (MOT) is vital for many applications including autonomous driving vehicles and service robots.
We present TrajectoryFormer, a novel point-cloud-based 3D MOT framework.
arXiv Detail & Related papers (2023-06-09T13:31:50Z) - MotionTrack: Learning Robust Short-term and Long-term Motions for
Multi-Object Tracking [56.92165669843006]
We propose MotionTrack, which learns robust short-term and long-term motions in a unified framework to associate trajectories from a short to long range.
For dense crowds, we design a novel Interaction Module to learn interaction-aware motions from short-term trajectories, which can estimate the complex movement of each target.
For extreme occlusions, we build a novel Refind Module to learn reliable long-term motions from the target's history trajectory, which can link the interrupted trajectory with its corresponding detection.
arXiv Detail & Related papers (2023-03-18T12:38:33Z) - Observation-Centric SORT: Rethinking SORT for Robust Multi-Object
Tracking [32.32109475782992]
We show that a simple motion model can obtain state-of-the-art tracking performance without other cues like appearance.
We thus name the proposed method as Observation-Centric SORT, OC-SORT for short.
arXiv Detail & Related papers (2022-03-27T17:57:08Z) - DEFT: Detection Embeddings for Tracking [3.326320568999945]
We propose an efficient joint detection and tracking model named DEFT.
Our approach relies on an appearance-based object matching network jointly-learned with an underlying object detection network.
DEFT has comparable accuracy and speed to the top methods on 2D online tracking leaderboards.
arXiv Detail & Related papers (2021-02-03T20:00:44Z) - Tracklets Predicting Based Adaptive Graph Tracking [51.352829280902114]
We present an accurate and end-to-end learning framework for multi-object tracking, namely textbfTPAGT.
It re-extracts the features of the tracklets in the current frame based on motion predicting, which is the key to solve the problem of features inconsistent.
arXiv Detail & Related papers (2020-10-18T16:16:49Z) - ArTIST: Autoregressive Trajectory Inpainting and Scoring for Tracking [80.02322563402758]
One of the core components in online multiple object tracking (MOT) frameworks is associating new detections with existing tracklets.
We introduce a probabilistic autoregressive generative model to score tracklet proposals by directly measuring the likelihood that a tracklet represents natural motion.
arXiv Detail & Related papers (2020-04-16T06:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.