Divide and Learn: A Divide and Conquer Approach for Predict+Optimize
- URL: http://arxiv.org/abs/2012.02342v1
- Date: Fri, 4 Dec 2020 00:26:56 GMT
- Title: Divide and Learn: A Divide and Conquer Approach for Predict+Optimize
- Authors: Ali Ugur Guler, Emir Demirovic, Jeffrey Chan, James Bailey,
Christopher Leckie, Peter J. Stuckey
- Abstract summary: The predict+optimize problem combines machine learning ofproblem coefficients with a optimization prob-lem that uses the predicted coefficients.
We show how to directlyexpress the loss of the optimization problem in terms of thepredicted coefficients as a piece-wise linear function.
We propose a novel divide and algorithm to tackle optimization problems without this restriction and predict itscoefficients using the optimization loss.
- Score: 50.03608569227359
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The predict+optimize problem combines machine learning ofproblem coefficients
with a combinatorial optimization prob-lem that uses the predicted
coefficients. While this problemcan be solved in two separate stages, it is
better to directlyminimize the optimization loss. However, this requires
dif-ferentiating through a discrete, non-differentiable combina-torial
function. Most existing approaches use some form ofsurrogate gradient.
Demirovicet alshowed how to directlyexpress the loss of the optimization
problem in terms of thepredicted coefficients as a piece-wise linear function.
How-ever, their approach is restricted to optimization problemswith a dynamic
programming formulation. In this work wepropose a novel divide and conquer
algorithm to tackle op-timization problems without this restriction and predict
itscoefficients using the optimization loss. We also introduce agreedy version
of this approach, which achieves similar re-sults with less computation. We
compare our approach withother approaches to the predict+optimize problem and
showwe can successfully tackle some hard combinatorial problemsbetter than
other predict+optimize methods.
Related papers
- BO4IO: A Bayesian optimization approach to inverse optimization with uncertainty quantification [5.031974232392534]
This work addresses data-driven inverse optimization (IO)
The goal is to estimate unknown parameters in an optimization model from observed decisions that can be assumed to be optimal or near-optimal.
arXiv Detail & Related papers (2024-05-28T06:52:17Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - First-Order Dynamic Optimization for Streaming Convex Costs [0.0]
We develop an approach to track the optimal solution with a bounded error.
Our algorithm is executed only by using the first-order derivatives of the cost function.
arXiv Detail & Related papers (2023-10-11T22:41:00Z) - Landscape Surrogate: Learning Decision Losses for Mathematical
Optimization Under Partial Information [48.784330281177446]
Recent works in learning-integrated optimization have shown promise in settings where the optimization is only partially observed or where general-purposes perform poorly without expert tuning.
We propose using a smooth and learnable Landscape Surrogate as a replacement for $fcirc mathbfg$.
This surrogate, learnable by neural networks, can be computed faster than the $mathbfg$ solver, provides dense and smooth gradients during training, can generalize to unseen optimization problems, and is efficiently learned via alternating optimization.
arXiv Detail & Related papers (2023-07-18T04:29:16Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - The Curse of Unrolling: Rate of Differentiating Through Optimization [35.327233435055305]
Un differentiation approximates the solution using an iterative solver and differentiates it through the computational path.
We show that we can either 1) choose a large learning rate leading to a fast convergence but accept that the algorithm may have an arbitrarily long burn-in phase or 2) choose a smaller learning rate leading to an immediate but slower convergence.
arXiv Detail & Related papers (2022-09-27T09:27:29Z) - Slowly Varying Regression under Sparsity [5.22980614912553]
We present the framework of slowly hyper regression under sparsity, allowing regression models to exhibit slow and sparse variations.
We suggest a procedure that reformulates as a binary convex algorithm.
We show that the resulting model outperforms competing formulations in comparable times across various datasets.
arXiv Detail & Related papers (2021-02-22T04:51:44Z) - Particle Swarm Optimization: Fundamental Study and its Application to
Optimization and to Jetty Scheduling Problems [0.0]
The advantages of evolutionary algorithms with respect to traditional methods have been greatly discussed in the literature.
While particle swarms share such advantages, they outperform evolutionary algorithms in that they require lower computational cost and easier implementation.
This paper does not intend to study their tuning, general-purpose settings are taken from previous studies, and virtually the same algorithm is used to optimize a variety of notably different problems.
arXiv Detail & Related papers (2021-01-25T02:06:30Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
Motivated by recent increased interest in analysis of optimization algorithms for non- optimization in deep networks and other problems in data, we give an overview of recent results of theoretical optimization algorithms for non- optimization.
arXiv Detail & Related papers (2020-12-11T08:28:51Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.