Isometric Multi-Shape Matching
- URL: http://arxiv.org/abs/2012.02689v2
- Date: Wed, 3 Apr 2024 15:18:00 GMT
- Title: Isometric Multi-Shape Matching
- Authors: Maolin Gao, Zorah Lähner, Johan Thunberg, Daniel Cremers, Florian Bernard,
- Abstract summary: Finding correspondences between shapes is a fundamental problem in computer vision and graphics.
While isometries are often studied in shape correspondence problems, they have not been considered explicitly in the multi-matching setting.
We present a suitable optimisation algorithm for solving our formulation and provide a convergence and complexity analysis.
- Score: 50.86135294068138
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Finding correspondences between shapes is a fundamental problem in computer vision and graphics, which is relevant for many applications, including 3D reconstruction, object tracking, and style transfer. The vast majority of correspondence methods aim to find a solution between pairs of shapes, even if multiple instances of the same class are available. While isometries are often studied in shape correspondence problems, they have not been considered explicitly in the multi-matching setting. This paper closes this gap by proposing a novel optimisation formulation for isometric multi-shape matching. We present a suitable optimisation algorithm for solving our formulation and provide a convergence and complexity analysis. Our algorithm obtains multi-matchings that are by construction provably cycle-consistent. We demonstrate the superior performance of our method on various datasets and set the new state-of-the-art in isometric multi-shape matching.
Related papers
- Beyond Complete Shapes: A quantitative Evaluation of 3D Shape Matching Algorithms [41.95394677818476]
Finding correspondences between 3D shapes is an important problem in computer vision, graphics and beyond.
We provide a generic and flexible framework for the procedural generation of challenging partial shape matching scenarios.
We manually create cross-dataset correspondences between seven existing (complete geometry) shape matching datasets, leading to a total of 2543 shapes.
arXiv Detail & Related papers (2024-11-05T21:08:19Z) - Geometry-aware Feature Matching for Large-Scale Structure from Motion [10.645087195983201]
We introduce geometry cues in addition to color cues to fill gaps when there is less overlap in large-scale scenarios.
Our approach ensures that the denser correspondences from detector-free methods are geometrically consistent and more accurate.
It outperforms state-of-the-art feature matching methods on benchmark datasets.
arXiv Detail & Related papers (2024-09-03T21:41:35Z) - Partial-to-Partial Shape Matching with Geometric Consistency [47.46502145377953]
Finding correspondences between 3D shapes is an important and long-standing problem in computer vision, graphics and beyond.
We bridge the gap between existing (rather artificial) 3D full shape matching and partial-to-partial real-world settings by exploiting geometric consistency as a strong constraint.
For the first time, we achieve geometric consistency for partial-to-partial matching, which is realized by a novel integer non-linear program formalism building on triangle product spaces.
arXiv Detail & Related papers (2024-04-18T14:14:07Z) - Geometrically Consistent Partial Shape Matching [50.29468769172704]
Finding correspondences between 3D shapes is a crucial problem in computer vision and graphics.
An often neglected but essential property of matching geometrics is consistency.
We propose a novel integer linear programming partial shape matching formulation.
arXiv Detail & Related papers (2023-09-10T12:21:42Z) - G-MSM: Unsupervised Multi-Shape Matching with Graph-based Affinity
Priors [52.646396621449]
G-MSM is a novel unsupervised learning approach for non-rigid shape correspondence.
We construct an affinity graph on a given set of training shapes in a self-supervised manner.
We demonstrate state-of-the-art performance on several recent shape correspondence benchmarks.
arXiv Detail & Related papers (2022-12-06T12:09:24Z) - Unsupervised Deep Multi-Shape Matching [15.050801537501462]
3D shape matching is a long-standing problem in computer vision and computer graphics.
We present a novel approach for deep multi-shape matching that ensures cycle-consistent multi-matchings.
Our method achieves state-of-the-art results on several challenging benchmark datasets.
arXiv Detail & Related papers (2022-07-20T01:22:08Z) - A Scalable Combinatorial Solver for Elastic Geometrically Consistent 3D
Shape Matching [69.14632473279651]
We present a scalable algorithm for globally optimizing over the space of geometrically consistent mappings between 3D shapes.
We propose a novel primal coupled with a Lagrange dual problem that is several orders of magnitudes faster than previous solvers.
arXiv Detail & Related papers (2022-04-27T09:47:47Z) - Multiway Non-rigid Point Cloud Registration via Learned Functional Map
Synchronization [105.14877281665011]
We present SyNoRiM, a novel way to register multiple non-rigid shapes by synchronizing the maps relating learned functions defined on the point clouds.
We demonstrate via extensive experiments that our method achieves a state-of-the-art performance in registration accuracy.
arXiv Detail & Related papers (2021-11-25T02:37:59Z) - MINA: Convex Mixed-Integer Programming for Non-Rigid Shape Alignment [77.38594866794429]
convex mixed-integer programming formulation for non-rigid shape matching.
We propose a novel shape deformation model based on an efficient low-dimensional discrete model.
arXiv Detail & Related papers (2020-02-28T09:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.