Computer Stereo Vision for Autonomous Driving
- URL: http://arxiv.org/abs/2012.03194v2
- Date: Thu, 17 Dec 2020 03:42:39 GMT
- Title: Computer Stereo Vision for Autonomous Driving
- Authors: Rui Fan, Li Wang, Mohammud Junaid Bocus, Ioannis Pitas
- Abstract summary: Computer stereo vision has been prevalently applied in autonomous cars for depth perception.
In this chapter, we introduce both the hardware and software aspects of computer stereo vision for autonomous car systems.
- Score: 31.517828028200682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As an important component of autonomous systems, autonomous car perception
has had a big leap with recent advances in parallel computing architectures.
With the use of tiny but full-feature embedded supercomputers, computer stereo
vision has been prevalently applied in autonomous cars for depth perception.
The two key aspects of computer stereo vision are speed and accuracy. They are
both desirable but conflicting properties, as the algorithms with better
disparity accuracy usually have higher computational complexity. Therefore, the
main aim of developing a computer stereo vision algorithm for resource-limited
hardware is to improve the trade-off between speed and accuracy. In this
chapter, we introduce both the hardware and software aspects of computer stereo
vision for autonomous car systems. Then, we discuss four autonomous car
perception tasks, including 1) visual feature detection, description and
matching, 2) 3D information acquisition, 3) object detection/recognition and 4)
semantic image segmentation. The principles of computer stereo vision and
parallel computing on multi-threading CPU and GPU architectures are then
detailed.
Related papers
- Advancing Autonomous Driving Perception: Analysis of Sensor Fusion and Computer Vision Techniques [0.0]
This project focuses on enhancing the understanding and navigation capabilities of self-driving robots.
It explores how we can perform better navigation into unknown map 2D map with existing detection and tracking algorithms.
arXiv Detail & Related papers (2024-11-15T19:11:58Z) - Cohere3D: Exploiting Temporal Coherence for Unsupervised Representation
Learning of Vision-based Autonomous Driving [73.3702076688159]
We propose a novel contrastive learning algorithm, Cohere3D, to learn coherent instance representations in a long-term input sequence.
We evaluate our algorithm by finetuning the pretrained model on various downstream perception, prediction, and planning tasks.
arXiv Detail & Related papers (2024-02-23T19:43:01Z) - Applications of Computer Vision in Autonomous Vehicles: Methods, Challenges and Future Directions [2.693342141713236]
This paper reviews publications on computer vision and autonomous driving that are published during the last ten years.
In particular, we first investigate the development of autonomous driving systems and summarize these systems that are developed by the major automotive manufacturers from different countries.
Then, a comprehensive overview of computer vision applications for autonomous driving such as depth estimation, object detection, lane detection, and traffic sign recognition are discussed.
arXiv Detail & Related papers (2023-11-15T16:41:18Z) - Learning Deep Sensorimotor Policies for Vision-based Autonomous Drone
Racing [52.50284630866713]
Existing systems often require hand-engineered components for state estimation, planning, and control.
This paper tackles the vision-based autonomous-drone-racing problem by learning deep sensorimotor policies.
arXiv Detail & Related papers (2022-10-26T19:03:17Z) - Surround-View Cameras based Holistic Visual Perception for Automated
Driving [0.6091702876917281]
We focus on developing near-field perception algorithms with high performance and low computational complexity.
These capabilities for computers is critical for various applications, including self-driving cars, augmented reality, and architectural surveying.
arXiv Detail & Related papers (2022-06-11T14:51:30Z) - KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding
in 2D and 3D [67.50776195828242]
KITTI-360 is a suburban driving dataset which comprises richer input modalities, comprehensive semantic instance annotations and accurate localization.
For efficient annotation, we created a tool to label 3D scenes with bounding primitives, resulting in over 150k semantic and instance annotated images and 1B annotated 3D points.
We established benchmarks and baselines for several tasks relevant to mobile perception, encompassing problems from computer vision, graphics, and robotics on the same dataset.
arXiv Detail & Related papers (2021-09-28T00:41:29Z) - YOLOP: You Only Look Once for Panoptic Driving Perception [21.802146960999394]
We present a panoptic driving perception network (YOLOP) to perform traffic object detection, drivable area segmentation and lane detection simultaneously.
It is composed of one encoder for feature extraction and three decoders to handle the specific tasks.
Our model performs extremely well on the challenging BDD100K dataset, achieving state-of-the-art on all three tasks in terms of accuracy and speed.
arXiv Detail & Related papers (2021-08-25T14:19:42Z) - Unsupervised Learning of Visual 3D Keypoints for Control [104.92063943162896]
Learning sensorimotor control policies from high-dimensional images crucially relies on the quality of the underlying visual representations.
We propose a framework to learn such a 3D geometric structure directly from images in an end-to-end unsupervised manner.
These discovered 3D keypoints tend to meaningfully capture robot joints as well as object movements in a consistent manner across both time and 3D space.
arXiv Detail & Related papers (2021-06-14T17:59:59Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.