MultiON: Benchmarking Semantic Map Memory using Multi-Object Navigation
- URL: http://arxiv.org/abs/2012.03912v1
- Date: Mon, 7 Dec 2020 18:42:38 GMT
- Title: MultiON: Benchmarking Semantic Map Memory using Multi-Object Navigation
- Authors: Saim Wani, Shivansh Patel, Unnat Jain, Angel X. Chang, Manolis Savva
- Abstract summary: Recent work shows that map-like memory is useful for long-horizon navigation tasks.
We propose the multiON task, which requires navigation to an episode-specific sequence of objects in a realistic environment.
We examine how a variety of agent models perform across a spectrum of navigation task complexities.
- Score: 23.877609358505268
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Navigation tasks in photorealistic 3D environments are challenging because
they require perception and effective planning under partial observability.
Recent work shows that map-like memory is useful for long-horizon navigation
tasks. However, a focused investigation of the impact of maps on navigation
tasks of varying complexity has not yet been performed. We propose the multiON
task, which requires navigation to an episode-specific sequence of objects in a
realistic environment. MultiON generalizes the ObjectGoal navigation task and
explicitly tests the ability of navigation agents to locate previously observed
goal objects. We perform a set of multiON experiments to examine how a variety
of agent models perform across a spectrum of navigation task complexities. Our
experiments show that: i) navigation performance degrades dramatically with
escalating task complexity; ii) a simple semantic map agent performs
surprisingly well relative to more complex neural image feature map agents; and
iii) even oracle map agents achieve relatively low performance, indicating the
potential for future work in training embodied navigation agents using maps.
Video summary: https://youtu.be/yqTlHNIcgnY
Related papers
- SayNav: Grounding Large Language Models for Dynamic Planning to Navigation in New Environments [14.179677726976056]
SayNav is a new approach that leverages human knowledge from Large Language Models (LLMs) for efficient generalization to complex navigation tasks.
SayNav achieves state-of-the-art results and even outperforms an oracle based baseline with strong ground-truth assumptions by more than 8% in terms of success rate.
arXiv Detail & Related papers (2023-09-08T02:24:37Z) - Object Goal Navigation with Recursive Implicit Maps [92.6347010295396]
We propose an implicit spatial map for object goal navigation.
Our method significantly outperforms the state of the art on the challenging MP3D dataset.
We deploy our model on a real robot and achieve encouraging object goal navigation results in real scenes.
arXiv Detail & Related papers (2023-08-10T14:21:33Z) - Towards Versatile Embodied Navigation [120.73460380993305]
Vienna is a versatile embodied navigation agent that simultaneously learns to perform the four navigation tasks with one model.
We empirically demonstrate that, compared with learning each visual navigation task individually, our agent achieves comparable or even better performance with reduced complexity.
arXiv Detail & Related papers (2022-10-30T11:53:49Z) - Weakly-Supervised Multi-Granularity Map Learning for Vision-and-Language
Navigation [87.52136927091712]
We address a practical yet challenging problem of training robot agents to navigate in an environment following a path described by some language instructions.
To achieve accurate and efficient navigation, it is critical to build a map that accurately represents both spatial location and the semantic information of the environment objects.
We propose a multi-granularity map, which contains both object fine-grained details (e.g., color, texture) and semantic classes, to represent objects more comprehensively.
arXiv Detail & Related papers (2022-10-14T04:23:27Z) - Multi-Agent Embodied Visual Semantic Navigation with Scene Prior
Knowledge [42.37872230561632]
In visual semantic navigation, the robot navigates to a target object with egocentric visual observations and the class label of the target is given.
Most of the existing models are only effective for single-agent navigation, and a single agent has low efficiency and poor fault tolerance when completing more complicated tasks.
We propose the multi-agent visual semantic navigation, in which multiple agents collaborate with others to find multiple target objects.
arXiv Detail & Related papers (2021-09-20T13:31:03Z) - Learning Synthetic to Real Transfer for Localization and Navigational
Tasks [7.019683407682642]
Navigation is at the crossroad of multiple disciplines, it combines notions of computer vision, robotics and control.
This work aimed at creating, in a simulation, a navigation pipeline whose transfer to the real world could be done with as few efforts as possible.
To design the navigation pipeline four main challenges arise; environment, localization, navigation and planning.
arXiv Detail & Related papers (2020-11-20T08:37:03Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
We propose occupancy anticipation, where the agent uses its egocentric RGB-D observations to infer the occupancy state beyond the visible regions.
By exploiting context in both the egocentric views and top-down maps our model successfully anticipates a broader map of the environment.
Our approach is the winning entry in the 2020 Habitat PointNav Challenge.
arXiv Detail & Related papers (2020-08-21T03:16:51Z) - Active Visual Information Gathering for Vision-Language Navigation [115.40768457718325]
Vision-language navigation (VLN) is the task of entailing an agent to carry out navigational instructions inside photo-realistic environments.
One of the key challenges in VLN is how to conduct a robust navigation by mitigating the uncertainty caused by ambiguous instructions and insufficient observation of the environment.
This work draws inspiration from human navigation behavior and endows an agent with an active information gathering ability for a more intelligent VLN policy.
arXiv Detail & Related papers (2020-07-15T23:54:20Z) - Improving Target-driven Visual Navigation with Attention on 3D Spatial
Relationships [52.72020203771489]
We investigate target-driven visual navigation using deep reinforcement learning (DRL) in 3D indoor scenes.
Our proposed method combines visual features and 3D spatial representations to learn navigation policy.
Our experiments, performed in the AI2-THOR, show that our model outperforms the baselines in both SR and SPL metrics.
arXiv Detail & Related papers (2020-04-29T08:46:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.