GraphFL: A Federated Learning Framework for Semi-Supervised Node
Classification on Graphs
- URL: http://arxiv.org/abs/2012.04187v1
- Date: Tue, 8 Dec 2020 03:13:29 GMT
- Title: GraphFL: A Federated Learning Framework for Semi-Supervised Node
Classification on Graphs
- Authors: Binghui Wang, Ang Li, Hai Li, Yiran Chen
- Abstract summary: We propose the first FL framework, namely GraphFL, for semi-supervised node classification on graphs.
We propose two GraphFL methods to respectively address the non-IID issue in graph data and handle the tasks with new label domains.
We adopt representative graph neural networks as GraphSSC methods and evaluate GraphFL on multiple graph datasets.
- Score: 48.13100386338979
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph-based semi-supervised node classification (GraphSSC) has wide
applications, ranging from networking and security to data mining and machine
learning, etc. However, existing centralized GraphSSC methods are impractical
to solve many real-world graph-based problems, as collecting the entire graph
and labeling a reasonable number of labels is time-consuming and costly, and
data privacy may be also violated. Federated learning (FL) is an emerging
learning paradigm that enables collaborative learning among multiple clients,
which can mitigate the issue of label scarcity and protect data privacy as
well. Therefore, performing GraphSSC under the FL setting is a promising
solution to solve real-world graph-based problems. However, existing FL methods
1) perform poorly when data across clients are non-IID, 2) cannot handle data
with new label domains, and 3) cannot leverage unlabeled data, while all these
issues naturally happen in real-world graph-based problems. To address the
above issues, we propose the first FL framework, namely GraphFL, for
semi-supervised node classification on graphs. Our framework is motivated by
meta-learning methods. Specifically, we propose two GraphFL methods to
respectively address the non-IID issue in graph data and handle the tasks with
new label domains. Furthermore, we design a self-training method to leverage
unlabeled graph data. We adopt representative graph neural networks as GraphSSC
methods and evaluate GraphFL on multiple graph datasets. Experimental results
demonstrate that GraphFL significantly outperforms the compared FL baseline and
GraphFL with self-training can obtain better performance.
Related papers
- OpenGraph: Towards Open Graph Foundation Models [20.401374302429627]
Graph Neural Networks (GNNs) have emerged as promising techniques for encoding structural information.
Key challenge remains: the difficulty of generalizing to unseen graph data with different properties.
We propose a novel graph foundation model, called OpenGraph, to address this challenge.
arXiv Detail & Related papers (2024-03-02T08:05:03Z) - GraphGPT: Graph Instruction Tuning for Large Language Models [27.036935149004726]
Graph Neural Networks (GNNs) have evolved to understand graph structures.
To enhance robustness, self-supervised learning (SSL) has become a vital tool for data augmentation.
Our research tackles this by advancing graph model generalization in zero-shot learning environments.
arXiv Detail & Related papers (2023-10-19T06:17:46Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
We develop a principled approach to the problem of graph learning with weak information (GLWI)
We propose D$2$PT, a dual-channel GNN framework that performs long-range information propagation on the input graph with incomplete structure, but also on a global graph that encodes global semantic similarities.
arXiv Detail & Related papers (2023-05-29T04:51:09Z) - Learnable Graph Matching: A Practical Paradigm for Data Association [74.28753343714858]
We propose a general learnable graph matching method to address these issues.
Our method achieves state-of-the-art performance on several MOT datasets.
For image matching, our method outperforms state-of-the-art methods on a popular indoor dataset, ScanNet.
arXiv Detail & Related papers (2023-03-27T17:39:00Z) - Federated Learning over Coupled Graphs [39.86903030911785]
Federated Learning (FL) has been proposed to solve the data isolation issue, mainly for Euclidean data.
We propose a novel FL framework for graph data, FedCog, to efficiently handle coupled graphs that are a kind of distributed graph data.
arXiv Detail & Related papers (2023-01-26T13:43:26Z) - Contrastive Graph Few-Shot Learning [67.01464711379187]
We propose a Contrastive Graph Few-shot Learning framework (CGFL) for graph mining tasks.
CGFL learns data representation in a self-supervised manner, thus mitigating the distribution shift impact for better generalization.
Comprehensive experiments demonstrate that CGFL outperforms state-of-the-art baselines on several graph mining tasks.
arXiv Detail & Related papers (2022-09-30T20:40:23Z) - Bringing Your Own View: Graph Contrastive Learning without Prefabricated
Data Augmentations [94.41860307845812]
Self-supervision is recently surging at its new frontier of graph learning.
GraphCL uses a prefabricated prior reflected by the ad-hoc manual selection of graph data augmentations.
We have extended the prefabricated discrete prior in the augmentation set, to a learnable continuous prior in the parameter space of graph generators.
We have leveraged both principles of information minimization (InfoMin) and information bottleneck (InfoBN) to regularize the learned priors.
arXiv Detail & Related papers (2022-01-04T15:49:18Z) - FedGraph: Federated Graph Learning with Intelligent Sampling [7.798227884125872]
Federated learning has attracted much research attention due to its privacy protection in distributed machine learning.
Existing work of federated learning mainly focuses on Convolutional Neural Network (CNN), which cannot efficiently handle graph data that are popular in many applications.
In this paper, we propose FedGraph for federated graph learning among multiple computing clients, each of which holds a subgraph.
arXiv Detail & Related papers (2021-11-02T04:58:03Z) - Learnable Graph Matching: Incorporating Graph Partitioning with Deep
Feature Learning for Multiple Object Tracking [58.30147362745852]
Data association across frames is at the core of Multiple Object Tracking (MOT) task.
Existing methods mostly ignore the context information among tracklets and intra-frame detections.
We propose a novel learnable graph matching method to address these issues.
arXiv Detail & Related papers (2021-03-30T08:58:45Z) - Sub-graph Contrast for Scalable Self-Supervised Graph Representation
Learning [21.0019144298605]
Existing graph neural networks fed with the complete graph data are not scalable due to limited computation and memory costs.
textscSubg-Con is proposed by utilizing the strong correlation between central nodes and their sampled subgraphs to capture regional structure information.
Compared with existing graph representation learning approaches, textscSubg-Con has prominent performance advantages in weaker supervision requirements, model learning scalability, and parallelization.
arXiv Detail & Related papers (2020-09-22T01:58:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.