Automatic Registration and Clustering of Time Series
- URL: http://arxiv.org/abs/2012.04756v2
- Date: Wed, 10 Feb 2021 18:30:11 GMT
- Title: Automatic Registration and Clustering of Time Series
- Authors: Michael Weylandt and George Michailidis
- Abstract summary: We propose a new method for automatic time series alignment within a clustering problem.
Our approach, Temporal Registration using Optimal Unitary Transformations (TROUT), is based on a novel dissimilarity measure between time series.
By embedding our new measure in a optimization formulation, we retain well-known advantages of computational and statistical performance.
- Score: 7.822816087275812
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Clustering of time series data exhibits a number of challenges not present in
other settings, notably the problem of registration (alignment) of observed
signals. Typical approaches include pre-registration to a user-specified
template or time warping approaches which attempt to optimally align series
with a minimum of distortion. For many signals obtained from recording or
sensing devices, these methods may be unsuitable as a template signal is not
available for pre-registration, while the distortion of warping approaches may
obscure meaningful temporal information. We propose a new method for automatic
time series alignment within a clustering problem. Our approach, Temporal
Registration using Optimal Unitary Transformations (TROUT), is based on a novel
dissimilarity measure between time series that is easy to compute and
automatically identifies optimal alignment between pairs of time series. By
embedding our new measure in a optimization formulation, we retain well-known
advantages of computational and statistical performance. We provide an
efficient algorithm for TROUT-based clustering and demonstrate its superior
performance over a range of competitors.
Related papers
- TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Low-count Time Series Anomaly Detection [1.3207844222875191]
Low-count time series describe sparse or intermittent events, which are prevalent in large-scale online platforms that capture and monitor diverse data types.
Several distinct challenges surface when modelling low-count time series, particularly low signal-to-noise ratios.
We introduce a novel generative procedure for creating benchmark datasets comprising of low-count time series with anomalous segments.
arXiv Detail & Related papers (2023-08-24T16:58:30Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
We propose two strategies to learn from large-scale unlabeled data.
The first strategy performs a local neighborhood sampling to reduce the dataset size in each without violating neighborhood relationships.
A second strategy leverages a novel Re-Ranking technique, which has a lower time upper bound complexity and reduces the memory complexity from O(n2) to O(kn) with k n.
arXiv Detail & Related papers (2023-07-26T16:19:19Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - COSTI: a New Classifier for Sequences of Temporal Intervals [0.0]
We develop a novel method for classification operating directly on sequences of temporal intervals.
The proposed method remains at a high level of accuracy and obtains better performance while avoiding shortcomings connected to operating on transformed data.
arXiv Detail & Related papers (2022-04-28T12:55:06Z) - Imputing Missing Observations with Time Sliced Synthetic Minority
Oversampling Technique [0.3973560285628012]
We present a simple yet novel time series imputation technique with the goal of constructing an irregular time series that is uniform across every sample in a data set.
We fix a grid defined by the midpoints of non-overlapping bins (dubbed "slices") of observation times and ensure that each sample has values for all of the features at that given time.
This allows one to both impute fully missing observations to allow uniform time series classification across the entire data and, in special cases, to impute individually missing features.
arXiv Detail & Related papers (2022-01-14T19:23:24Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Nonparametric Extrema Analysis in Time Series for Envelope Extraction,
Peak Detection and Clustering [0.0]
We propose a nonparametric approach that can be used in envelope extraction, peak-burst detection and clustering in time series.
Our problem formalization results in a naturally defined splitting/forking of the time series.
arXiv Detail & Related papers (2021-09-05T14:21:24Z) - Unsupervised Representation Learning for Time Series with Temporal
Neighborhood Coding [8.45908939323268]
We propose a self-supervised framework for learning generalizable representations for non-stationary time series.
Our motivation stems from the medical field, where the ability to model the dynamic nature of time series data is especially valuable.
arXiv Detail & Related papers (2021-06-01T19:53:24Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
Change point detection (CPD) aims to locate abrupt property changes in time series data.
Recent CPD methods demonstrated the potential of using deep learning techniques, but often lack the ability to identify more subtle changes in the autocorrelation statistics of the signal.
We employ an autoencoder-based methodology with a novel loss function, through which the used autoencoders learn a partially time-invariant representation that is tailored for CPD.
arXiv Detail & Related papers (2020-08-21T15:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.