Improving Relation Extraction by Leveraging Knowledge Graph Link
Prediction
- URL: http://arxiv.org/abs/2012.04812v1
- Date: Wed, 9 Dec 2020 01:08:13 GMT
- Title: Improving Relation Extraction by Leveraging Knowledge Graph Link
Prediction
- Authors: George Stoica, Emmanouil Antonios Platanios, Barnab\'as P\'oczos
- Abstract summary: We propose a multi-task learning approach that improves the performance of RE models by jointly training on RE and KGLP tasks.
We illustrate the generality of our approach by applying it on several existing RE models and empirically demonstrate how it helps them achieve consistent performance gains.
- Score: 5.820381428297218
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Relation extraction (RE) aims to predict a relation between a subject and an
object in a sentence, while knowledge graph link prediction (KGLP) aims to
predict a set of objects, O, given a subject and a relation from a knowledge
graph. These two problems are closely related as their respective objectives
are intertwined: given a sentence containing a subject and an object o, a RE
model predicts a relation that can then be used by a KGLP model together with
the subject, to predict a set of objects O. Thus, we expect object o to be in
set O. In this paper, we leverage this insight by proposing a multi-task
learning approach that improves the performance of RE models by jointly
training on RE and KGLP tasks. We illustrate the generality of our approach by
applying it on several existing RE models and empirically demonstrate how it
helps them achieve consistent performance gains.
Related papers
- A Unifying Framework for Action-Conditional Self-Predictive Reinforcement Learning [48.59516337905877]
Learning a good representation is a crucial challenge for Reinforcement Learning (RL) agents.
Recent work has developed theoretical insights into these algorithms.
We take a step towards bridging the gap between theory and practice by analyzing an action-conditional self-predictive objective.
arXiv Detail & Related papers (2024-06-04T07:22:12Z) - Learning Latent Graph Structures and their Uncertainty [63.95971478893842]
Graph Neural Networks (GNNs) use relational information as an inductive bias to enhance the model's accuracy.
As task-relevant relations might be unknown, graph structure learning approaches have been proposed to learn them while solving the downstream prediction task.
arXiv Detail & Related papers (2024-05-30T10:49:22Z) - Relational Prior Knowledge Graphs for Detection and Instance
Segmentation [24.360473253478112]
We propose a graph that enhances object features using priors.
Experimental evaluations on COCO show that the utilization of scene graphs, augmented with relational priors, offer benefits for object detection and instance segmentation.
arXiv Detail & Related papers (2023-10-11T15:15:05Z) - SARF: Aliasing Relation Assisted Self-Supervised Learning for Few-shot
Relation Reasoning [43.59319243928048]
Few-shot relation reasoning on knowledge graphs (FS-KGR) aims to infer long-tail data-poor relations.
We propose a novel Self-Supervised Learning model by leveraging Aliasing Relations to assist FS-KGR, termed SARF.
arXiv Detail & Related papers (2023-04-20T13:24:59Z) - Knowledge Graph Completion with Counterfactual Augmentation [23.20561746976504]
We introduce a counterfactual question: "would the relation still exist if the neighborhood of entities became different from observation?"
With a carefully designed instantiation of a causal model on the knowledge graph, we generate the counterfactual relations to answer the question.
We incorporate the created counterfactual relations with the GNN-based framework on KGs to augment their learning of entity pair representations.
arXiv Detail & Related papers (2023-02-25T14:08:15Z) - Federated Learning Aggregation: New Robust Algorithms with Guarantees [63.96013144017572]
Federated learning has been recently proposed for distributed model training at the edge.
This paper presents a complete general mathematical convergence analysis to evaluate aggregation strategies in a federated learning framework.
We derive novel aggregation algorithms which are able to modify their model architecture by differentiating client contributions according to the value of their losses.
arXiv Detail & Related papers (2022-05-22T16:37:53Z) - Multi-view Inference for Relation Extraction with Uncertain Knowledge [8.064148591925932]
This paper proposes to exploit uncertain knowledge to improve relation extraction.
We introduce ProBase, an uncertain KG that indicates to what extent a target entity belongs to a concept.
We then design a novel multi-view inference framework to systematically integrate local context and global knowledge.
arXiv Detail & Related papers (2021-04-28T05:56:33Z) - Unified Graph Structured Models for Video Understanding [93.72081456202672]
We propose a message passing graph neural network that explicitly models relational-temporal relations.
We show how our method is able to more effectively model relationships between relevant entities in the scene.
arXiv Detail & Related papers (2021-03-29T14:37:35Z) - RelWalk A Latent Variable Model Approach to Knowledge Graph Embedding [50.010601631982425]
This paper extends the random walk model (Arora et al., 2016a) of word embeddings to Knowledge Graph Embeddings (KGEs)
We derive a scoring function that evaluates the strength of a relation R between two entities h (head) and t (tail)
We propose a learning objective motivated by the theoretical analysis to learn KGEs from a given knowledge graph.
arXiv Detail & Related papers (2021-01-25T13:31:29Z) - Combining Task Predictors via Enhancing Joint Predictability [53.46348489300652]
We present a new predictor combination algorithm that improves the target by i) measuring the relevance of references based on their capabilities in predicting the target, and ii) strengthening such estimated relevance.
Our algorithm jointly assesses the relevance of all references by adopting a Bayesian framework.
Based on experiments on seven real-world datasets from visual attribute ranking and multi-class classification scenarios, we demonstrate that our algorithm offers a significant performance gain and broadens the application range of existing predictor combination approaches.
arXiv Detail & Related papers (2020-07-15T21:58:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.