Improving Gradient Flow with Unrolled Highway Expectation Maximization
- URL: http://arxiv.org/abs/2012.04926v1
- Date: Wed, 9 Dec 2020 09:11:45 GMT
- Title: Improving Gradient Flow with Unrolled Highway Expectation Maximization
- Authors: Chonghyuk Song, Eunseok Kim, Inwook Shim
- Abstract summary: We propose Highway Expectation Maximization Networks (HEMNet), which is comprised of unrolled iterations of the generalized EM (GEM) algorithm.
HEMNet features scaled skip connections, or highways, along the depths of the unrolled architecture, resulting in improved gradient flow during backpropagation.
We achieve significant improvement on several semantic segmentation benchmarks and empirically show that HEMNet effectively alleviates gradient decay.
- Score: 0.9539495585692008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Integrating model-based machine learning methods into deep neural
architectures allows one to leverage both the expressive power of deep neural
nets and the ability of model-based methods to incorporate domain-specific
knowledge. In particular, many works have employed the expectation maximization
(EM) algorithm in the form of an unrolled layer-wise structure that is jointly
trained with a backbone neural network. However, it is difficult to
discriminatively train the backbone network by backpropagating through the EM
iterations as they are prone to the vanishing gradient problem. To address this
issue, we propose Highway Expectation Maximization Networks (HEMNet), which is
comprised of unrolled iterations of the generalized EM (GEM) algorithm based on
the Newton-Rahpson method. HEMNet features scaled skip connections, or
highways, along the depths of the unrolled architecture, resulting in improved
gradient flow during backpropagation while incurring negligible additional
computation and memory costs compared to standard unrolled EM. Furthermore,
HEMNet preserves the underlying EM procedure, thereby fully retaining the
convergence properties of the original EM algorithm. We achieve significant
improvement in performance on several semantic segmentation benchmarks and
empirically show that HEMNet effectively alleviates gradient decay.
Related papers
- Adaptive Anomaly Detection in Network Flows with Low-Rank Tensor Decompositions and Deep Unrolling [9.20186865054847]
Anomaly detection (AD) is increasingly recognized as a key component for ensuring the resilience of future communication systems.
This work considers AD in network flows using incomplete measurements.
We propose a novel block-successive convex approximation algorithm based on a regularized model-fitting objective.
Inspired by Bayesian approaches, we extend the model architecture to perform online adaptation to per-flow and per-time-step statistics.
arXiv Detail & Related papers (2024-09-17T19:59:57Z) - Soft Merging: A Flexible and Robust Soft Model Merging Approach for
Enhanced Neural Network Performance [6.599368083393398]
Gradient (SGD) is often limited to converging local optima to improve model performance.
em soft merging method minimizes the obtained local optima models in undesirable results.
Experiments underscore the effectiveness of the merged networks.
arXiv Detail & Related papers (2023-09-21T17:07:31Z) - Towards Theoretically Inspired Neural Initialization Optimization [66.04735385415427]
We propose a differentiable quantity, named GradCosine, with theoretical insights to evaluate the initial state of a neural network.
We show that both the training and test performance of a network can be improved by maximizing GradCosine under norm constraint.
Generalized from the sample-wise analysis into the real batch setting, NIO is able to automatically look for a better initialization with negligible cost.
arXiv Detail & Related papers (2022-10-12T06:49:16Z) - Scaling Forward Gradient With Local Losses [117.22685584919756]
Forward learning is a biologically plausible alternative to backprop for learning deep neural networks.
We show that it is possible to substantially reduce the variance of the forward gradient by applying perturbations to activations rather than weights.
Our approach matches backprop on MNIST and CIFAR-10 and significantly outperforms previously proposed backprop-free algorithms on ImageNet.
arXiv Detail & Related papers (2022-10-07T03:52:27Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
deep equilibrium model is a class of models that foregoes traditional network depth and instead computes the output of a network by finding the fixed point of a single nonlinear layer.
We show that there is a natural synergy between these two settings.
We demonstrate this strategy on various tasks such as training generative models while optimizing over latent codes, training models for inverse problems like denoising and inpainting, adversarial training and gradient based meta-learning.
arXiv Detail & Related papers (2021-11-25T19:59:33Z) - A Dynamical View on Optimization Algorithms of Overparameterized Neural
Networks [23.038631072178735]
We consider a broad class of optimization algorithms that are commonly used in practice.
As a consequence, we can leverage the convergence behavior of neural networks.
We believe our approach can also be extended to other optimization algorithms and network theory.
arXiv Detail & Related papers (2020-10-25T17:10:22Z) - Deep unfolding of the weighted MMSE beamforming algorithm [9.518010235273783]
We propose the novel application of deep unfolding to the WMMSE algorithm for a MISO downlink channel.
Deep unfolding naturally incorporates expert knowledge, with the benefits of immediate and well-grounded architecture selection, fewer trainable parameters, and better explainability.
By means of simulations, we show that, in most of the settings, the unfolded WMMSE outperforms or performs equally to the WMMSE for a fixed number of iterations.
arXiv Detail & Related papers (2020-06-15T14:51:20Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.