Topology-Adaptive Mesh Deformation for Surface Evolution, Morphing, and
Multi-View Reconstruction
- URL: http://arxiv.org/abs/2012.05536v1
- Date: Thu, 10 Dec 2020 09:26:40 GMT
- Title: Topology-Adaptive Mesh Deformation for Surface Evolution, Morphing, and
Multi-View Reconstruction
- Authors: Andrei Zaharescu, Edmond Boyer, and Radu Horaud
- Abstract summary: We introduce a new self-intersection removal algorithm, TransforMesh, and we propose a mesh evolution framework based on this algorithm.
We describe two challenging applications, namely surface morphing and 3-D reconstruction.
- Score: 35.01330182954581
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Triangulated meshes have become ubiquitous discrete-surface representations.
In this paper we address the problem of how to maintain the manifold properties
of a surface while it undergoes strong deformations that may cause topological
changes. We introduce a new self-intersection removal algorithm, TransforMesh,
and we propose a mesh evolution framework based on this algorithm. Numerous
shape modelling applications use surface evolution in order to improve shape
properties, such as appearance or accuracy. Both explicit and implicit
representations can be considered for that purpose. However, explicit mesh
representations, while allowing for accurate surface modelling, suffer from the
inherent difficulty of reliably dealing with self-intersections and topological
changes such as merges and splits. As a consequence, a majority of methods rely
on implicit representations of surfaces, e.g. level-sets, that naturally
overcome these issues. Nevertheless, these methods are based on volumetric
discretizations, which introduce an unwanted precision-complexity trade-off.
The method that we propose handles topological changes in a robust manner and
removes self intersections, thus overcoming the traditional limitations of
mesh-based approaches. To illustrate the effectiveness of TransforMesh, we
describe two challenging applications, namely surface morphing and 3-D
reconstruction.
Related papers
- SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
We present a scheme to directly generate manifold, polygonal meshes of complex connectivity as the output of a neural network.
Our key innovation is to define a continuous latent connectivity space at each mesh, which implies the discrete mesh.
In applications, this approach not only yields high-quality outputs from generative models, but also enables directly learning challenging geometry processing tasks such as mesh repair.
arXiv Detail & Related papers (2024-09-30T17:59:03Z) - Basis restricted elastic shape analysis on the space of unregistered
surfaces [10.543359560247847]
This paper introduces a new mathematical and numerical framework for surface analysis.
The specificity of the approach we develop is to restrict the space of allowable transformations to predefined finite dimensional bases of deformation fields.
We specifically validate our approach on human body shape and pose data as well as human face scans, and show how it generally outperforms state-of-the-art methods on problems such as shape registration, motion transfer or random pose generation.
arXiv Detail & Related papers (2023-11-07T23:06:22Z) - Dynamic Point Fields [30.029872787758705]
We present a dynamic point field model that combines the representational benefits of explicit point-based graphics with implicit deformation networks.
We show the advantages of our dynamic point field framework in terms of its representational power, learning efficiency, and robustness to out-of-distribution novel poses.
arXiv Detail & Related papers (2023-04-05T17:52:37Z) - Neural Shape Deformation Priors [14.14047635248036]
We present Neural Shape Deformation Priors, a novel method for shape manipulation.
We learn the deformation behavior based on the underlying geometric properties of a shape.
Our method can be applied to challenging deformations and generalizes well to unseen deformations.
arXiv Detail & Related papers (2022-10-11T17:03:25Z) - NeuralMeshing: Differentiable Meshing of Implicit Neural Representations [63.18340058854517]
We propose a novel differentiable meshing algorithm for extracting surface meshes from neural implicit representations.
Our method produces meshes with regular tessellation patterns and fewer triangle faces compared to existing methods.
arXiv Detail & Related papers (2022-10-05T16:52:25Z) - A Level Set Theory for Neural Implicit Evolution under Explicit Flows [102.18622466770114]
Coordinate-based neural networks parameterizing implicit surfaces have emerged as efficient representations of geometry.
We present a framework that allows applying deformation operations defined for triangle meshes onto such implicit surfaces.
We show that our approach exhibits improvements for applications like surface smoothing, mean-curvature flow, inverse rendering and user-defined editing on implicit geometry.
arXiv Detail & Related papers (2022-04-14T17:59:39Z) - DeepMesh: Differentiable Iso-Surface Extraction [53.77622255726208]
We introduce a differentiable way to produce explicit surface mesh representations from Deep Implicit Fields.
Our key insight is that by reasoning on how implicit field perturbations impact local surface geometry, one can ultimately differentiate the 3D location of surface samples.
We exploit this to define DeepMesh -- end-to-end differentiable mesh representation that can vary its topology.
arXiv Detail & Related papers (2021-06-20T20:12:41Z) - SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural
Implicit Shapes [117.76767853430243]
We introduce SNARF, which combines the advantages of linear blend skinning for polygonal meshes with neural implicit surfaces.
We propose a forward skinning model that finds all canonical correspondences of any deformed point using iterative root finding.
Compared to state-of-the-art neural implicit representations, our approach generalizes better to unseen poses while preserving accuracy.
arXiv Detail & Related papers (2021-04-08T17:54:59Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
We propose a primal-dual framework drawn from the graph-neural-network literature to triangle meshes.
Our method takes features for both edges and faces of a 3D mesh as input and dynamically aggregates them.
We provide theoretical insights of our approach using tools from the mesh-simplification literature.
arXiv Detail & Related papers (2020-10-23T14:49:02Z) - MeshSDF: Differentiable Iso-Surface Extraction [45.769838982991736]
We introduce a differentiable way to produce explicit surface mesh representations from Deep Signed Distance Functions.
Our key insight is that by reasoning on how implicit field perturbations impact local surface geometry, one can ultimately differentiate the 3D location of surface samples.
We exploit this to define MeshSDF, an end-to-end differentiable mesh representation which can vary its topology.
arXiv Detail & Related papers (2020-06-06T23:44:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.