Weakly Supervised Arrhythmia Detection Based on Deep Convolutional
Neural Network
- URL: http://arxiv.org/abs/2012.05641v1
- Date: Thu, 10 Dec 2020 12:59:33 GMT
- Title: Weakly Supervised Arrhythmia Detection Based on Deep Convolutional
Neural Network
- Authors: Yang Liu, Kuanquan Wang, Qince Li, Runnan He, Yongfeng Yuan, and
Henggui Zhang
- Abstract summary: Supervised deep learning has been widely used in the studies of automatic ECG classification.
Most of the existing large ECG datasets are roughly annotated, so the classification model trained on them can only detect the existence of abnormalities in a whole recording.
This study proposes weakly supervised deep learning models for detecting abnormal ECG events and their occurrence time.
- Score: 5.967433492643221
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Supervised deep learning has been widely used in the studies of automatic ECG
classification, which largely benefits from sufficient annotation of large
datasets. However, most of the existing large ECG datasets are roughly
annotated, so the classification model trained on them can only detect the
existence of abnormalities in a whole recording, but cannot determine their
exact occurrence time. In addition, it may take huge time and economic cost to
construct a fine-annotated ECG dataset. Therefore, this study proposes weakly
supervised deep learning models for detecting abnormal ECG events and their
occurrence time. The available supervision information for the models is
limited to the event types in an ECG record, excluding the specific occurring
time of each event. By leverage of feature locality of deep convolution neural
network, the models first make predictions based on the local features, and
then aggregate the local predictions to infer the existence of each event
during the whole record. Through training, the local predictions are expected
to reflect the specific occurring time of each event. To test their potentials,
we apply the models for detecting cardiac rhythmic and morphological
arrhythmias by using the AFDB and MITDB datasets, respectively. The results
show that the models achieve beat-level accuracies of 99.09% in detecting
atrial fibrillation, and 99.13% in detecting morphological arrhythmias, which
are comparable to that of fully supervised learning models, demonstrating their
effectiveness. The local prediction maps revealed by this method are also
helpful to analyze and diagnose the decision logic of record-level
classification models.
Related papers
- Refining Tuberculosis Detection in CXR Imaging: Addressing Bias in Deep Neural Networks via Interpretability [1.9936075659851882]
We argue that the reliability of deep learning models is limited, even if they can be shown to obtain perfect classification accuracy on the test data.
We show that pre-training a deep neural network on a large-scale proxy task, as well as using mixed objective optimization network (MOON), can improve the alignment of decision foundations between models and experts.
arXiv Detail & Related papers (2024-07-19T06:41:31Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - Automated Labeling of German Chest X-Ray Radiology Reports using Deep
Learning [50.591267188664666]
We propose a deep learning-based CheXpert label prediction model, pre-trained on reports labeled by a rule-based German CheXpert model.
Our results demonstrate the effectiveness of our approach, which significantly outperformed the rule-based model on all three tasks.
arXiv Detail & Related papers (2023-06-09T16:08:35Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Improving self-supervised pretraining models for epileptic seizure
detection from EEG data [0.23624125155742057]
This paper presents various self-supervision strategies to enhance the performance of a time-series based Diffusion convolution neural network (DCRNN) model.
The learned weights in the self-supervision pretraining phase can be transferred to the supervised training phase to boost the model's prediction capability.
arXiv Detail & Related papers (2022-06-28T17:15:49Z) - Global ECG Classification by Self-Operational Neural Networks with
Feature Injection [25.15075119957447]
We propose a novel approach for inter-patient ECG classification using a compact 1D Self-Organized Operational Neural Networks (Self-ONNs)
We used 1D Self-ONN layers to automatically learn morphological representations from ECG data, enabling us to capture the shape of the ECG waveform around the R peaks.
Using the MIT-BIH arrhythmia benchmark database, the proposed method achieves the highest classification performance ever achieved.
arXiv Detail & Related papers (2022-04-07T22:49:18Z) - Self-supervised Pretraining with Classification Labels for Temporal
Activity Detection [54.366236719520565]
Temporal Activity Detection aims to predict activity classes per frame.
Due to the expensive frame-level annotations required for detection, the scale of detection datasets is limited.
This work proposes a novel self-supervised pretraining method for detection leveraging classification labels.
arXiv Detail & Related papers (2021-11-26T18:59:28Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Multiple Organ Failure Prediction with Classifier-Guided Generative
Adversarial Imputation Networks [4.040013871160853]
Multiple organ failure (MOF) is a severe syndrome with a high mortality rate among Intensive Care Unit (ICU) patients.
Applying machine learning models to electronic health records is a challenge due to the pervasiveness of missing values.
arXiv Detail & Related papers (2021-06-22T15:49:01Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Multi-Lead ECG Classification via an Information-Based Attention
Convolutional Neural Network [1.1720399305661802]
One-dimensional convolutional neural networks (CNN) have proven to be effective in pervasive classification tasks.
We implement the Residual connection and design a structure which can learn the weights from the information contained in different channels in the input feature map.
An indicator named mean square deviation is introduced to monitor the performance of a particular model segment in the classification task.
arXiv Detail & Related papers (2020-03-25T02:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.