xRAI: Explainable Representations through AI
- URL: http://arxiv.org/abs/2012.06006v1
- Date: Thu, 10 Dec 2020 22:49:29 GMT
- Title: xRAI: Explainable Representations through AI
- Authors: Christiann Bartelt and Sascha Marton and Heiner Stuckenschmidt
- Abstract summary: We present an approach for extracting symbolic representations of the mathematical function a neural network was supposed to learn from the trained network.
The approach is based on the idea of training a so-called interpretation network that receives the weights and biases of the trained network as input and outputs the numerical representation of the function the network was supposed to learn that can be directly translated into a symbolic representation.
- Score: 10.345196226375455
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present xRAI an approach for extracting symbolic representations of the
mathematical function a neural network was supposed to learn from the trained
network. The approach is based on the idea of training a so-called
interpretation network that receives the weights and biases of the trained
network as input and outputs the numerical representation of the function the
network was supposed to learn that can be directly translated into a symbolic
representation. We show that interpretation nets for different classes of
functions can be trained on synthetic data offline using Boolean functions and
low-order polynomials as examples. We show that the training is rather
efficient and the quality of the results are promising. Our work aims to
provide a contribution to the problem of better understanding neural decision
making by making the target function explicit
Related papers
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - Reasoning-Modulated Representations [85.08205744191078]
We study a common setting where our task is not purely opaque.
Our approach paves the way for a new class of data-efficient representation learning.
arXiv Detail & Related papers (2021-07-19T13:57:13Z) - The Connection Between Approximation, Depth Separation and Learnability
in Neural Networks [70.55686685872008]
We study the connection between learnability and approximation capacity.
We show that learnability with deep networks of a target function depends on the ability of simpler classes to approximate the target.
arXiv Detail & Related papers (2021-01-31T11:32:30Z) - Reward Propagation Using Graph Convolutional Networks [61.32891095232801]
We propose a new framework for learning potential functions by leveraging ideas from graph representation learning.
Our approach relies on Graph Convolutional Networks which we use as a key ingredient in combination with the probabilistic inference view of reinforcement learning.
arXiv Detail & Related papers (2020-10-06T04:38:16Z) - The Representation Theory of Neural Networks [7.724617675868718]
We show that neural networks can be represented via the mathematical theory of quiver representations.
We show that network quivers gently adapt to common neural network concepts.
We also provide a quiver representation model to understand how a neural network creates representations from the data.
arXiv Detail & Related papers (2020-07-23T19:02:14Z) - Towards Understanding Hierarchical Learning: Benefits of Neural
Representations [160.33479656108926]
In this work, we demonstrate that intermediate neural representations add more flexibility to neural networks.
We show that neural representation can achieve improved sample complexities compared with the raw input.
Our results characterize when neural representations are beneficial, and may provide a new perspective on why depth is important in deep learning.
arXiv Detail & Related papers (2020-06-24T02:44:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.