Monocular Real-time Full Body Capture with Inter-part Correlations
- URL: http://arxiv.org/abs/2012.06087v2
- Date: Thu, 15 Apr 2021 06:18:53 GMT
- Title: Monocular Real-time Full Body Capture with Inter-part Correlations
- Authors: Yuxiao Zhou, Marc Habermann, Ikhsanul Habibie, Ayush Tewari, Christian
Theobalt, Feng Xu
- Abstract summary: We present the first method for real-time full body capture that estimates shape and motion of body and hands together with a dynamic 3D face model from a single color image.
Our approach uses a new neural network architecture that exploits correlations between body and hands at high computational efficiency.
- Score: 66.22835689189237
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present the first method for real-time full body capture that estimates
shape and motion of body and hands together with a dynamic 3D face model from a
single color image. Our approach uses a new neural network architecture that
exploits correlations between body and hands at high computational efficiency.
Unlike previous works, our approach is jointly trained on multiple datasets
focusing on hand, body or face separately, without requiring data where all the
parts are annotated at the same time, which is much more difficult to create at
sufficient variety. The possibility of such multi-dataset training enables
superior generalization ability. In contrast to earlier monocular full body
methods, our approach captures more expressive 3D face geometry and color by
estimating the shape, expression, albedo and illumination parameters of a
statistical face model. Our method achieves competitive accuracy on public
benchmarks, while being significantly faster and providing more complete face
reconstructions.
Related papers
- DICE: End-to-end Deformation Capture of Hand-Face Interactions from a Single Image [98.29284902879652]
We present DICE, the first end-to-end method for Deformation-aware hand-face Interaction reCovEry from a single image.
It features disentangling the regression of local deformation fields and global mesh locations into two network branches.
It achieves state-of-the-art performance on a standard benchmark and in-the-wild data in terms of accuracy and physical plausibility.
arXiv Detail & Related papers (2024-06-26T00:08:29Z) - Generalizable Neural Performer: Learning Robust Radiance Fields for
Human Novel View Synthesis [52.720314035084215]
This work targets at using a general deep learning framework to synthesize free-viewpoint images of arbitrary human performers.
We present a simple yet powerful framework, named Generalizable Neural Performer (GNR), that learns a generalizable and robust neural body representation.
Experiments on GeneBody-1.0 and ZJU-Mocap show better robustness of our methods than recent state-of-the-art generalizable methods.
arXiv Detail & Related papers (2022-04-25T17:14:22Z) - LatentHuman: Shape-and-Pose Disentangled Latent Representation for Human
Bodies [78.17425779503047]
We propose a novel neural implicit representation for the human body.
It is fully differentiable and optimizable with disentangled shape and pose latent spaces.
Our model can be trained and fine-tuned directly on non-watertight raw data with well-designed losses.
arXiv Detail & Related papers (2021-11-30T04:10:57Z) - Deep3DPose: Realtime Reconstruction of Arbitrarily Posed Human Bodies
from Single RGB Images [5.775625085664381]
We introduce an approach that accurately reconstructs 3D human poses and detailed 3D full-body geometric models from single images in realtime.
Key idea of our approach is a novel end-to-end multi-task deep learning framework that uses single images to predict five outputs simultaneously.
We show the system advances the frontier of 3D human body and pose reconstruction from single images by quantitative evaluations and comparisons with state-of-the-art methods.
arXiv Detail & Related papers (2021-06-22T04:26:11Z) - Real-time Pose and Shape Reconstruction of Two Interacting Hands With a
Single Depth Camera [79.41374930171469]
We present a novel method for real-time pose and shape reconstruction of two strongly interacting hands.
Our approach combines an extensive list of favorable properties, namely it is marker-less.
We show state-of-the-art results in scenes that exceed the complexity level demonstrated by previous work.
arXiv Detail & Related papers (2021-06-15T11:39:49Z) - Weakly-Supervised Multi-Face 3D Reconstruction [45.864415499303405]
We propose an effective end-to-end framework for multi-face 3D reconstruction.
We employ the same global camera model for the reconstructed faces in each image, which makes it possible to recover the relative head positions and orientations in the 3D scene.
arXiv Detail & Related papers (2021-01-06T13:15:21Z) - HMOR: Hierarchical Multi-Person Ordinal Relations for Monocular
Multi-Person 3D Pose Estimation [54.23770284299979]
This paper introduces a novel form of supervision - Hierarchical Multi-person Ordinal Relations (HMOR)
HMOR encodes interaction information as the ordinal relations of depths and angles hierarchically.
An integrated top-down model is designed to leverage these ordinal relations in the learning process.
The proposed method significantly outperforms state-of-the-art methods on publicly available multi-person 3D pose datasets.
arXiv Detail & Related papers (2020-08-01T07:53:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.