Anomaly detection through latent space restoration using
vector-quantized variational autoencoders
- URL: http://arxiv.org/abs/2012.06765v1
- Date: Sat, 12 Dec 2020 09:19:59 GMT
- Title: Anomaly detection through latent space restoration using
vector-quantized variational autoencoders
- Authors: Sergio Naval Marimont and Giacomo Tarroni
- Abstract summary: We propose an out-of-distribution detection method using density and restoration-based approaches.
The VQ-VAE model learns to encode images in a categorical latent space.
The prior distribution of latent codes is then modelled using an Auto-Regressive (AR) model.
- Score: 0.8122270502556374
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an out-of-distribution detection method that combines density and
restoration-based approaches using Vector-Quantized Variational Auto-Encoders
(VQ-VAEs). The VQ-VAE model learns to encode images in a categorical latent
space. The prior distribution of latent codes is then modelled using an
Auto-Regressive (AR) model. We found that the prior probability estimated by
the AR model can be useful for unsupervised anomaly detection and enables the
estimation of both sample and pixel-wise anomaly scores. The sample-wise score
is defined as the negative log-likelihood of the latent variables above a
threshold selecting highly unlikely codes. Additionally, out-of-distribution
images are restored into in-distribution images by replacing unlikely latent
codes with samples from the prior model and decoding to pixel space. The
average L1 distance between generated restorations and original image is used
as pixel-wise anomaly score. We tested our approach on the MOOD challenge
datasets, and report higher accuracies compared to a standard
reconstruction-based approach with VAEs.
Related papers
- DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Autoencoding Variational Autoencoder [56.05008520271406]
We study the implications of this behaviour on the learned representations and also the consequences of fixing it by introducing a notion of self consistency.
We show that encoders trained with our self-consistency approach lead to representations that are robust (insensitive) to perturbations in the input introduced by adversarial attacks.
arXiv Detail & Related papers (2020-12-07T14:16:14Z) - Addressing Variance Shrinkage in Variational Autoencoders using Quantile
Regression [0.0]
Probable Variational AutoEncoder (VAE) has become a popular model for anomaly detection in applications such as lesion detection in medical images.
We describe an alternative approach that avoids the well-known problem of shrinkage or underestimation of variance.
Using estimated quantiles to compute mean and variance under the Gaussian assumption, we compute reconstruction probability as a principled approach to outlier or anomaly detection.
arXiv Detail & Related papers (2020-10-18T17:37:39Z) - CQ-VAE: Coordinate Quantized VAE for Uncertainty Estimation with
Application to Disk Shape Analysis from Lumbar Spine MRI Images [1.5841288368322592]
We propose a powerful generative model to learn a representation of ambiguity and to generate probabilistic outputs.
Our model, named Coordinate Quantization Variational Autoencoder (CQ-VAE), employs a discrete latent space with an internal discrete probability distribution.
A matching algorithm is used to establish the correspondence between model-generated samples and "ground-truth" samples.
arXiv Detail & Related papers (2020-10-17T04:25:32Z) - Uncertainty Inspired RGB-D Saliency Detection [70.50583438784571]
We propose the first framework to employ uncertainty for RGB-D saliency detection by learning from the data labeling process.
Inspired by the saliency data labeling process, we propose a generative architecture to achieve probabilistic RGB-D saliency detection.
Results on six challenging RGB-D benchmark datasets show our approach's superior performance in learning the distribution of saliency maps.
arXiv Detail & Related papers (2020-09-07T13:01:45Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Unsupervised Lesion Detection via Image Restoration with a Normative
Prior [6.495883501989547]
We propose a probabilistic model that uses a network-based prior as the normative distribution and detect lesions pixel-wise using MAP estimation.
Experiments with gliomas and stroke lesions in brain MRI show that the proposed approach outperforms the state-of-the-art unsupervised methods by a substantial margin.
arXiv Detail & Related papers (2020-04-30T18:03:18Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.