Fusion of Range and Stereo Data for High-Resolution Scene-Modeling
- URL: http://arxiv.org/abs/2012.06769v1
- Date: Sat, 12 Dec 2020 09:37:42 GMT
- Title: Fusion of Range and Stereo Data for High-Resolution Scene-Modeling
- Authors: Georgios D. Evangelidis, Miles Hansard, and Radu Horaud
- Abstract summary: This paper addresses the problem of range-stereo fusion, for the construction of high-resolution depth maps.
We combine low-resolution depth data with high-resolution stereo data, in a maximum a posteriori (MAP) formulation.
The accuracy of the method is not compromised, owing to three properties of the data-term in the energy function.
- Score: 20.824550995195057
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the problem of range-stereo fusion, for the construction
of high-resolution depth maps. In particular, we combine low-resolution depth
data with high-resolution stereo data, in a maximum a posteriori (MAP)
formulation. Unlike existing schemes that build on MRF optimizers, we infer the
disparity map from a series of local energy minimization problems that are
solved hierarchically, by growing sparse initial disparities obtained from the
depth data. The accuracy of the method is not compromised, owing to three
properties of the data-term in the energy function. Firstly, it incorporates a
new correlation function that is capable of providing refined correlations and
disparities, via subpixel correction. Secondly, the correlation scores rely on
an adaptive cost aggregation step, based on the depth data. Thirdly, the stereo
and depth likelihoods are adaptively fused, based on the scene texture and
camera geometry. These properties lead to a more selective growing process
which, unlike previous seed-growing methods, avoids the tendency to propagate
incorrect disparities. The proposed method gives rise to an intrinsically
efficient algorithm, which runs at 3FPS on 2.0MP images on a standard desktop
computer. The strong performance of the new method is established both by
quantitative comparisons with state-of-the-art methods, and by qualitative
comparisons using real depth-stereo data-sets.
Related papers
- SD-MVS: Segmentation-Driven Deformation Multi-View Stereo with Spherical
Refinement and EM optimization [6.886220026399106]
We introduce Multi-View Stereo (SD-MVS) to tackle challenges in 3D reconstruction of textureless areas.
We are the first to adopt the Segment Anything Model (SAM) to distinguish semantic instances in scenes.
We propose a unique refinement strategy that combines spherical coordinates and gradient descent on normals and pixelwise search interval on depths.
arXiv Detail & Related papers (2024-01-12T05:25:57Z) - M3D: Dataset Condensation by Minimizing Maximum Mean Discrepancy [26.227927019615446]
Training state-of-the-art (SOTA) deep models often requires extensive data, resulting in substantial training and storage costs.
dataset condensation has been developed to learn a small synthetic set that preserves essential information from the original large-scale dataset.
We present a novel DM-based method named M3D for dataset condensation by Minimizing the Maximum Mean Discrepancy.
arXiv Detail & Related papers (2023-12-26T07:45:32Z) - Robust and accurate depth estimation by fusing LiDAR and Stereo [8.85338187686374]
We propose a precision and robust method for fusing the LiDAR and stereo cameras.
This method fully combines the advantages of the LiDAR and stereo camera.
We evaluate the proposed pipeline on the KITTI benchmark.
arXiv Detail & Related papers (2022-07-13T11:55:15Z) - Orthogonal Matrix Retrieval with Spatial Consensus for 3D Unknown-View
Tomography [58.60249163402822]
Unknown-view tomography (UVT) reconstructs a 3D density map from its 2D projections at unknown, random orientations.
The proposed OMR is more robust and performs significantly better than the previous state-of-the-art OMR approach.
arXiv Detail & Related papers (2022-07-06T21:40:59Z) - SMD-Nets: Stereo Mixture Density Networks [68.56947049719936]
We propose Stereo Mixture Density Networks (SMD-Nets), a simple yet effective learning framework compatible with a wide class of 2D and 3D architectures.
Specifically, we exploit bimodal mixture densities as output representation and show that this allows for sharp and precise disparity estimates near discontinuities.
We carry out comprehensive experiments on a new high-resolution and highly realistic synthetic stereo dataset, consisting of stereo pairs at 8Mpx resolution, as well as on real-world stereo datasets.
arXiv Detail & Related papers (2021-04-08T16:15:46Z) - Deep Two-View Structure-from-Motion Revisited [83.93809929963969]
Two-view structure-from-motion (SfM) is the cornerstone of 3D reconstruction and visual SLAM.
We propose to revisit the problem of deep two-view SfM by leveraging the well-posedness of the classic pipeline.
Our method consists of 1) an optical flow estimation network that predicts dense correspondences between two frames; 2) a normalized pose estimation module that computes relative camera poses from the 2D optical flow correspondences, and 3) a scale-invariant depth estimation network that leverages epipolar geometry to reduce the search space, refine the dense correspondences, and estimate relative depth maps.
arXiv Detail & Related papers (2021-04-01T15:31:20Z) - Depth-conditioned Dynamic Message Propagation for Monocular 3D Object
Detection [86.25022248968908]
We learn context- and depth-aware feature representation to solve the problem of monocular 3D object detection.
We show state-of-the-art results among the monocular-based approaches on the KITTI benchmark dataset.
arXiv Detail & Related papers (2021-03-30T16:20:24Z) - Light Field Reconstruction via Deep Adaptive Fusion of Hybrid Lenses [67.01164492518481]
This paper explores the problem of reconstructing high-resolution light field (LF) images from hybrid lenses.
We propose a novel end-to-end learning-based approach, which can comprehensively utilize the specific characteristics of the input.
Our framework could potentially decrease the cost of high-resolution LF data acquisition and benefit LF data storage and transmission.
arXiv Detail & Related papers (2021-02-14T06:44:47Z) - Displacement-Invariant Cost Computation for Efficient Stereo Matching [122.94051630000934]
Deep learning methods have dominated stereo matching leaderboards by yielding unprecedented disparity accuracy.
But their inference time is typically slow, on the order of seconds for a pair of 540p images.
We propose a emphdisplacement-invariant cost module to compute the matching costs without needing a 4D feature volume.
arXiv Detail & Related papers (2020-12-01T23:58:16Z) - Real-time Dense Reconstruction of Tissue Surface from Stereo Optical
Video [10.181846237133167]
We propose an approach to reconstruct dense three-dimensional (3D) model of tissue surface from stereo optical videos in real-time.
The basic idea is to first extract 3D information from video frames by using stereo matching, and then to mosaic the reconstructed 3D models.
Experimental results on ex- and in vivo data showed that the reconstructed 3D models have high resolution texture with an accuracy error of less than 2 mm.
arXiv Detail & Related papers (2020-07-16T19:14:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.