Sim-to-real reinforcement learning applied to end-to-end vehicle control
- URL: http://arxiv.org/abs/2012.07461v1
- Date: Mon, 14 Dec 2020 12:30:47 GMT
- Title: Sim-to-real reinforcement learning applied to end-to-end vehicle control
- Authors: Andr\'as Kalapos, Csaba G\'or, R\'obert Moni, Istv\'an Harmati
- Abstract summary: We study end-to-end reinforcement learning on vehicle control problems, such as lane following and collision avoidance.
Our controller policy is able to control a small-scale robot to follow the right-hand lane of a real two-lane road, while its training was solely carried out in a simulation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we study vision-based end-to-end reinforcement learning on
vehicle control problems, such as lane following and collision avoidance. Our
controller policy is able to control a small-scale robot to follow the
right-hand lane of a real two-lane road, while its training was solely carried
out in a simulation. Our model, realized by a simple, convolutional network,
only relies on images of a forward-facing monocular camera and generates
continuous actions that directly control the vehicle. To train this policy we
used Proximal Policy Optimization, and to achieve the generalization capability
required for real performance we used domain randomization. We carried out
thorough analysis of the trained policy, by measuring multiple performance
metrics and comparing these to baselines that rely on other methods. To assess
the quality of the simulation-to-reality transfer learning process and the
performance of the controller in the real world, we measured simple metrics on
a real track and compared these with results from a matching simulation.
Further analysis was carried out by visualizing salient object maps.
Related papers
- Autonomous vehicle decision and control through reinforcement learning with traffic flow randomization [5.217416662464762]
We propose a method to randomize the driving style and behavior of surrounding vehicles by randomizing certain parameters of the car-following model and the lane-changing model of rule-based microscopic traffic flow.
We trained policies with deep reinforcement learning algorithms under the domain randomized rule-based microscopic traffic flow in freeway and merging scenes, and then tested them separately in rule-based microscopic traffic flow and high-fidelity microscopic traffic flow.
arXiv Detail & Related papers (2024-03-05T11:41:43Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
Data-driven simulators promise high data-efficiency for driving policy learning.
Small underlying datasets often lack interesting and challenging edge cases for learning interactive driving.
We propose a simulation method that uses in-painted ado vehicles for learning robust driving policies.
arXiv Detail & Related papers (2021-11-23T20:14:02Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z) - Affordance-based Reinforcement Learning for Urban Driving [3.507764811554557]
We propose a deep reinforcement learning framework to learn optimal control policy using waypoints and low-dimensional visual representations.
We demonstrate that our agents when trained from scratch learn the tasks of lane-following, driving around inter-sections as well as stopping in front of other actors or traffic lights even in the dense traffic setting.
arXiv Detail & Related papers (2021-01-15T05:21:25Z) - CARLA Real Traffic Scenarios -- novel training ground and benchmark for
autonomous driving [8.287331387095545]
This work introduces interactive traffic scenarios in the CARLA simulator, which are based on real-world traffic.
We concentrate on tactical tasks lasting several seconds, which are especially challenging for current control methods.
The CARLA Real Traffic Scenarios (CRTS) is intended to be a training and testing ground for autonomous driving systems.
arXiv Detail & Related papers (2020-12-16T13:20:39Z) - Learning from Simulation, Racing in Reality [126.56346065780895]
We present a reinforcement learning-based solution to autonomously race on a miniature race car platform.
We show that a policy that is trained purely in simulation can be successfully transferred to the real robotic setup.
arXiv Detail & Related papers (2020-11-26T14:58:49Z) - Simulation-based reinforcement learning for real-world autonomous driving [9.773015744446067]
We use reinforcement learning in simulation to obtain a driving system controlling a full-size real-world vehicle.
The driving policy takes RGB images from a single camera and their semantic segmentation as input.
We use mostly synthetic data, with labelled real-world data appearing only in the training of the segmentation network.
arXiv Detail & Related papers (2019-11-29T00:08:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.