Regularizing Recurrent Neural Networks via Sequence Mixup
- URL: http://arxiv.org/abs/2012.07527v1
- Date: Fri, 27 Nov 2020 05:43:40 GMT
- Title: Regularizing Recurrent Neural Networks via Sequence Mixup
- Authors: Armin Karamzade, Amir Najafi and Seyed Abolfazl Motahari
- Abstract summary: We extend a class of celebrated regularization techniques originally proposed for feed-forward neural networks.
Our proposed methods are easy to implement complexity, while leverage the performance of simple neural architectures.
- Score: 7.036759195546171
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we extend a class of celebrated regularization techniques
originally proposed for feed-forward neural networks, namely Input Mixup (Zhang
et al., 2017) and Manifold Mixup (Verma et al., 2018), to the realm of
Recurrent Neural Networks (RNN). Our proposed methods are easy to implement and
have a low computational complexity, while leverage the performance of simple
neural architectures in a variety of tasks. We have validated our claims
through several experiments on real-world datasets, and also provide an
asymptotic theoretical analysis to further investigate the properties and
potential impacts of our proposed techniques. Applying sequence mixup to
BiLSTM-CRF model (Huang et al., 2015) to Named Entity Recognition task on
CoNLL-2003 data (Sang and De Meulder, 2003) has improved the F-1 score on the
test stage and reduced the loss, considerably.
Related papers
- Time Elastic Neural Networks [2.1756081703276]
We introduce and detail an atypical neural network architecture, called time elastic neural network (teNN)
The novelty compared to classical neural network architecture is that it explicitly incorporates time warping ability.
We demonstrate that, during the training process, the teNN succeeds in reducing the number of neurons required within each cell.
arXiv Detail & Related papers (2024-05-27T09:01:30Z) - Neural Network with Local Converging Input (NNLCI) for Supersonic Flow
Problems with Unstructured Grids [0.9152133607343995]
We develop a neural network with local converging input (NNLCI) for high-fidelity prediction using unstructured data.
As a validation case, the NNLCI method is applied to study inviscid supersonic flows in channels with bumps.
arXiv Detail & Related papers (2023-10-23T19:03:37Z) - Iterative self-transfer learning: A general methodology for response
time-history prediction based on small dataset [0.0]
An iterative self-transfer learningmethod for training neural networks based on small datasets is proposed in this study.
The results show that the proposed method can improve the model performance by near an order of magnitude on small datasets.
arXiv Detail & Related papers (2023-06-14T18:48:04Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
We show that when the data distribution is well-separated, DNNs can achieve Bayes-optimal test error for classification.
Our results indicate that interpolating with smoother functions leads to better generalization.
arXiv Detail & Related papers (2023-05-30T19:37:44Z) - SymNMF-Net for The Symmetric NMF Problem [62.44067422984995]
We propose a neural network called SymNMF-Net for the Symmetric NMF problem.
We show that the inference of each block corresponds to a single iteration of the optimization.
Empirical results on real-world datasets demonstrate the superiority of our SymNMF-Net.
arXiv Detail & Related papers (2022-05-26T08:17:39Z) - On Feature Learning in Neural Networks with Global Convergence
Guarantees [49.870593940818715]
We study the optimization of wide neural networks (NNs) via gradient flow (GF)
We show that when the input dimension is no less than the size of the training set, the training loss converges to zero at a linear rate under GF.
We also show empirically that, unlike in the Neural Tangent Kernel (NTK) regime, our multi-layer model exhibits feature learning and can achieve better generalization performance than its NTK counterpart.
arXiv Detail & Related papers (2022-04-22T15:56:43Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
We propose a new approach for the regularization of neural networks by the local Rademacher complexity called LocalDrop.
A new regularization function for both fully-connected networks (FCNs) and convolutional neural networks (CNNs) has been developed based on the proposed upper bound of the local Rademacher complexity.
arXiv Detail & Related papers (2021-03-01T03:10:11Z) - Ensembles of Spiking Neural Networks [0.3007949058551534]
This paper demonstrates how to construct ensembles of spiking neural networks producing state-of-the-art results.
We achieve classification accuracies of 98.71%, 100.0%, and 99.09%, on the MNIST, NMNIST and DVS Gesture datasets respectively.
We formalize spiking neural networks as GLM predictors, identifying a suitable representation for their target domain.
arXiv Detail & Related papers (2020-10-15T17:45:18Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Continual Learning in Recurrent Neural Networks [67.05499844830231]
We evaluate the effectiveness of continual learning methods for processing sequential data with recurrent neural networks (RNNs)
We shed light on the particularities that arise when applying weight-importance methods, such as elastic weight consolidation, to RNNs.
We show that the performance of weight-importance methods is not directly affected by the length of the processed sequences, but rather by high working memory requirements.
arXiv Detail & Related papers (2020-06-22T10:05:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.