Keyword-Guided Neural Conversational Model
- URL: http://arxiv.org/abs/2012.08383v3
- Date: Sun, 28 Feb 2021 05:55:23 GMT
- Title: Keyword-Guided Neural Conversational Model
- Authors: Peixiang Zhong, Yong Liu, Hao Wang, Chunyan Miao
- Abstract summary: We propose a keyword-guided neural conversational model that can leverage external commonsense knowledge graphs (CKG) for both keyword transition and response retrieval.
Our model produces responses with smoother keyword transition and reaches the target keyword faster than competitive baselines.
- Score: 40.75894394914768
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of imposing conversational goals/keywords on open-domain
conversational agents, where the agent is required to lead the conversation to
a target keyword smoothly and fast. Solving this problem enables the
application of conversational agents in many real-world scenarios, e.g.,
recommendation and psychotherapy. The dominant paradigm for tackling this
problem is to 1) train a next-turn keyword classifier, and 2) train a
keyword-augmented response retrieval model. However, existing approaches in
this paradigm have two limitations: 1) the training and evaluation datasets for
next-turn keyword classification are directly extracted from conversations
without human annotations, thus, they are noisy and have low correlation with
human judgements, and 2) during keyword transition, the agents solely rely on
the similarities between word embeddings to move closer to the target keyword,
which may not reflect how humans converse. In this paper, we assume that human
conversations are grounded on commonsense and propose a keyword-guided neural
conversational model that can leverage external commonsense knowledge graphs
(CKG) for both keyword transition and response retrieval. Automatic evaluations
suggest that commonsense improves the performance of both next-turn keyword
prediction and keyword-augmented response retrieval. In addition, both
self-play and human evaluations show that our model produces responses with
smoother keyword transition and reaches the target keyword faster than
competitive baselines.
Related papers
- Phrase Retrieval for Open-Domain Conversational Question Answering with
Conversational Dependency Modeling via Contrastive Learning [54.55643652781891]
Open-Domain Conversational Question Answering (ODConvQA) aims at answering questions through a multi-turn conversation.
We propose a method to directly predict answers with a phrase retrieval scheme for a sequence of words.
arXiv Detail & Related papers (2023-06-07T09:46:38Z) - Keyword Extraction for Improved Document Retrieval in Conversational
Search [10.798537120200006]
Mixed-initiative conversational search provides enormous advantages.
incorporating additional information provided by the user from the conversation poses some challenges.
We have collected two conversational keyword extraction datasets and propose an end-to-end document retrieval pipeline incorporating them.
arXiv Detail & Related papers (2021-09-13T13:55:37Z) - A Taxonomy of Empathetic Response Intents in Human Social Conversations [1.52292571922932]
Open-domain conversational agents are becoming increasingly popular in the natural language processing community.
One of the challenges is enabling them to converse in an empathetic manner.
Current neural response generation methods rely solely on end-to-end learning from large scale conversation data to generate dialogues.
Recent work has shown the promise of combining dialogue act/intent modelling and neural response generation.
arXiv Detail & Related papers (2020-12-07T21:56:45Z) - Generating Dialogue Responses from a Semantic Latent Space [75.18449428414736]
We propose an alternative to the end-to-end classification on vocabulary.
We learn the pair relationship between the prompts and responses as a regression task on a latent space.
Human evaluation showed that learning the task on a continuous space can generate responses that are both relevant and informative.
arXiv Detail & Related papers (2020-10-04T19:06:16Z) - Dialogue Response Ranking Training with Large-Scale Human Feedback Data [52.12342165926226]
We leverage social media feedback data to build a large-scale training dataset for feedback prediction.
We trained DialogRPT, a set of GPT-2 based models on 133M pairs of human feedback data.
Our ranker outperforms the conventional dialog perplexity baseline with a large margin on predicting Reddit feedback.
arXiv Detail & Related papers (2020-09-15T10:50:05Z) - Sequential Sentence Matching Network for Multi-turn Response Selection
in Retrieval-based Chatbots [45.920841134523286]
We propose a matching network, called sequential sentence matching network (S2M), to use the sentence-level semantic information to address the problem.
Firstly, we find that by using the sentence-level semantic information, the network successfully addresses the problem and gets a significant improvement on matching, resulting in a state-of-the-art performance.
arXiv Detail & Related papers (2020-05-16T09:47:19Z) - Learning an Unreferenced Metric for Online Dialogue Evaluation [53.38078951628143]
We propose an unreferenced automated evaluation metric that uses large pre-trained language models to extract latent representations of utterances.
We show that our model achieves higher correlation with human annotations in an online setting, while not requiring true responses for comparison during inference.
arXiv Detail & Related papers (2020-05-01T20:01:39Z) - Keyword-Attentive Deep Semantic Matching [1.8416014644193064]
We propose a keyword-attentive approach to improve deep semantic matching.
We first leverage domain tags from a large corpus to generate a domain-enhanced keyword dictionary.
During model training, we propose a new negative sampling approach based on keyword coverage between the input pair.
arXiv Detail & Related papers (2020-03-11T10:18:32Z) - Dynamic Knowledge Routing Network For Target-Guided Open-Domain
Conversation [79.7781436501706]
We propose a structured approach that controls the intended content of system responses by introducing coarse-grained keywords.
We also propose a novel dual discourse-level target-guided strategy to guide conversations to reach their goals smoothly with higher success rate.
arXiv Detail & Related papers (2020-02-04T09:49:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.