Enabling Collaborative Video Sensing at the Edge through Convolutional
Sharing
- URL: http://arxiv.org/abs/2012.08643v1
- Date: Thu, 3 Dec 2020 06:29:09 GMT
- Title: Enabling Collaborative Video Sensing at the Edge through Convolutional
Sharing
- Authors: Kasthuri Jayarajah, Dhanuja Wanniarachchige, Archan Misra
- Abstract summary: We propose a novel paradigm by which peer nodes in a network can collaborate to improve their accuracy on person detection.
Early results show promise with improvements in recall as high as 10% with a single collaborator.
- Score: 2.2488787113581923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While Deep Neural Network (DNN) models have provided remarkable advances in
machine vision capabilities, their high computational complexity and model
sizes present a formidable roadblock to deployment in AIoT-based sensing
applications. In this paper, we propose a novel paradigm by which peer nodes in
a network can collaborate to improve their accuracy on person detection, an
exemplar machine vision task. The proposed methodology requires no re-training
of the DNNs and incurs minimal processing latency as it extracts scene
summaries from the collaborators and injects back into DNNs of the reference
cameras, on-the-fly. Early results show promise with improvements in recall as
high as 10% with a single collaborator, on benchmark datasets.
Related papers
- Exploring Neural Network Pruning with Screening Methods [3.443622476405787]
Modern deep learning models have tens of millions of parameters which makes the inference processes resource-intensive.
This paper proposes and evaluates a network pruning framework that eliminates non-essential parameters.
The proposed framework produces competitive lean networks compared to the original networks.
arXiv Detail & Related papers (2025-02-11T02:31:04Z) - Model-driven deep neural network for enhanced direction finding with commodity 5G gNodeB [30.94668439883861]
Current wireless networks heavily rely on pure model-driven techniques to achieve positioning functionality.
Here we reformulate the direction finding or angle-of-arrival (AoA) estimation problem as an image recovery task of the spatial spectrum.
We show that the proposed MoD-DNN framework enables effective spectrum calibration and accurate AoA estimation.
arXiv Detail & Related papers (2024-12-14T02:09:36Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - NNsight and NDIF: Democratizing Access to Open-Weight Foundation Model Internals [58.83169560132308]
We introduce NNsight and NDIF, technologies that work in tandem to enable scientific study of the representations and computations learned by very large neural networks.
arXiv Detail & Related papers (2024-07-18T17:59:01Z) - EvSegSNN: Neuromorphic Semantic Segmentation for Event Data [0.6138671548064356]
EvSegSNN is a biologically plausible encoder-decoder U-shaped architecture relying on Parametric Leaky Integrate and Fire neurons.
We introduce an end-to-end biologically inspired semantic segmentation approach by combining Spiking Neural Networks with event cameras.
Experiments conducted on DDD17 demonstrate that EvSegSNN outperforms the closest state-of-the-art model in terms of MIoU.
arXiv Detail & Related papers (2024-06-20T10:36:24Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications.
In this paper we propose an uncertainty quantification approach by modelling the distribution of features.
We incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble neural networks (BE-SNNs) and overcome the feature collapse problem.
We show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM
arXiv Detail & Related papers (2022-06-26T16:00:22Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Adversarially Robust and Explainable Model Compression with On-Device
Personalization for Text Classification [4.805959718658541]
On-device Deep Neural Networks (DNNs) have recently gained more attention due to the increasing computing power of mobile devices and the number of applications in Computer Vision (CV) and Natural Language Processing (NLP)
In NLP applications, although model compression has seen initial success, there are at least three major challenges yet to be addressed: adversarial robustness, explainability, and personalization.
Here we attempt to tackle these challenges by designing a new training scheme for model compression and adversarial robustness, including the optimization of an explainable feature mapping objective.
The resulting compressed model is personalized using on-device private training data via fine-
arXiv Detail & Related papers (2021-01-10T15:06:55Z) - RAMP-CNN: A Novel Neural Network for Enhanced Automotive Radar Object
Recognition [10.006245521984697]
We propose a radar multiple-perspectives convolutional neural network (RAMP-CNN) that extracts the location and class of objects.
To bypass the complexity of 4D convolutional neural networks (NN), we propose to combine several lower-dimension NN models within our RAMP-CNN model.
The proposed RAMP-CNN model achieves better average recall and average precision than prior works in all testing scenarios.
arXiv Detail & Related papers (2020-11-13T19:12:12Z) - Ensembles of Spiking Neural Networks [0.3007949058551534]
This paper demonstrates how to construct ensembles of spiking neural networks producing state-of-the-art results.
We achieve classification accuracies of 98.71%, 100.0%, and 99.09%, on the MNIST, NMNIST and DVS Gesture datasets respectively.
We formalize spiking neural networks as GLM predictors, identifying a suitable representation for their target domain.
arXiv Detail & Related papers (2020-10-15T17:45:18Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Toward fast and accurate human pose estimation via soft-gated skip
connections [97.06882200076096]
This paper is on highly accurate and highly efficient human pose estimation.
We re-analyze this design choice in the context of improving both the accuracy and the efficiency over the state-of-the-art.
Our model achieves state-of-the-art results on the MPII and LSP datasets.
arXiv Detail & Related papers (2020-02-25T18:51:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.