Building and Using Personal Knowledge Graph to Improve Suicidal Ideation
Detection on Social Media
- URL: http://arxiv.org/abs/2012.09123v1
- Date: Wed, 16 Dec 2020 18:09:32 GMT
- Title: Building and Using Personal Knowledge Graph to Improve Suicidal Ideation
Detection on Social Media
- Authors: Lei Cao, Huijun Zhang, and Ling Feng
- Abstract summary: We build and unify a high-level suicide-oriented knowledge graph with deep neural networks for suicidal ideation detection on social media.
We show that the social media-based suicidal ideation detection can achieve over 93% accuracy.
Under these categories, posted text, stress level, stress duration, posted image, and ruminant thinking contribute to one's suicidal ideation detection.
- Score: 4.769234388745917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A large number of individuals are suffering from suicidal ideation in the
world. There are a number of causes behind why an individual might suffer from
suicidal ideation. As the most popular platform for self-expression, emotion
release, and personal interaction, individuals may exhibit a number of symptoms
of suicidal ideation on social media. Nevertheless, challenges from both data
and knowledge aspects remain as obstacles, constraining the social media-based
detection performance. Data implicitness and sparsity make it difficult to
discover the inner true intentions of individuals based on their posts.
Inspired by psychological studies, we build and unify a high-level
suicide-oriented knowledge graph with deep neural networks for suicidal
ideation detection on social media. We further design a two-layered attention
mechanism to explicitly reason and establish key risk factors to individual's
suicidal ideation. The performance study on microblog and Reddit shows that: 1)
with the constructed personal knowledge graph, the social media-based suicidal
ideation detection can achieve over 93% accuracy; and 2) among the six
categories of personal factors, post, personality, and experience are the top-3
key indicators. Under these categories, posted text, stress level, stress
duration, posted image, and ruminant thinking contribute to one's suicidal
ideation detection.
Related papers
- MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
Mental health disorders are one of the most serious diseases in the world.
Privacy concerns limit the accessibility of personalized treatment data.
MentalArena is a self-play framework to train language models.
arXiv Detail & Related papers (2024-10-09T13:06:40Z) - CautionSuicide: A Deep Learning Based Approach for Detecting Suicidal
Ideation in Real Time Chatbot Conversation [0.0]
Early detection of suicidal ideations can help to prevent suicide occurrence.
We propose a novel, simple deep learning-based model to detect suicidal ideations in digital content.
arXiv Detail & Related papers (2024-01-02T04:14:16Z) - Conceptualizing Suicidal Behavior: Utilizing Explanations of Predicted
Outcomes to Analyze Longitudinal Social Media Data [2.76101452577748]
The COVID-19 pandemic has escalated mental health crises worldwide.
Suicide can result from social factors such as shame, abuse, abandonment, and mental health conditions like depression.
As these conditions develop, signs of suicidal ideation may manifest in social media interactions.
arXiv Detail & Related papers (2023-12-13T17:15:12Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
We propose a deep architecture for depression detection from social media posts.
We incorporate profanity and morality features of posts and words in our architecture using a late fusion scheme.
The inclusion of the proposed features yields state-of-the-art results in both settings.
arXiv Detail & Related papers (2023-03-24T21:26:27Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
This paper presents an efficient semantic pipeline to study depression severity in individuals based on their social media writings.
We use test user sentences for producing semantic rankings over an index of representative training sentences corresponding to depressive symptoms and severity levels.
We evaluate our methods on two Reddit-based benchmarks, achieving 30% improvement over state of the art in terms of measuring depression severity.
arXiv Detail & Related papers (2022-11-14T18:47:26Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
According to the World health organization (WHO), approximately 450 million people are affected.
Mental illnesses, such as depression, anxiety, bipolar disorder, ADHD, and PTSD.
This study analyzes unstructured user data on Reddit platform and classifies five common mental illnesses: depression, anxiety, bipolar disorder, ADHD, and PTSD.
arXiv Detail & Related papers (2022-07-03T11:33:52Z) - Suicidal Ideation Detection on Social Media: A Review of Machine
Learning Methods [0.34265828682659694]
Many studies have been carried out to identify suicidal ideation and behaviors in social media.
This paper presents a comprehensive summary of current research efforts to detect suicidal ideation using machine learning algorithms on social media.
arXiv Detail & Related papers (2022-01-25T18:23:47Z) - An ensemble deep learning technique for detecting suicidal ideation from
posts in social media platforms [0.0]
This paper proposes a LSTM-Attention-CNN combined model to analyze social media submissions to detect suicidal intentions.
The proposed model demonstrated an accuracy of 90.3 percent and an F1-score of 92.6 percent.
arXiv Detail & Related papers (2021-12-17T15:34:03Z) - Learning Language and Multimodal Privacy-Preserving Markers of Mood from
Mobile Data [74.60507696087966]
Mental health conditions remain underdiagnosed even in countries with common access to advanced medical care.
One promising data source to help monitor human behavior is daily smartphone usage.
We study behavioral markers of daily mood using a recent dataset of mobile behaviors from adolescent populations at high risk of suicidal behaviors.
arXiv Detail & Related papers (2021-06-24T17:46:03Z) - Suicidal Ideation and Mental Disorder Detection with Attentive Relation
Networks [43.2802002858859]
This paper enhances text representation with lexicon-based sentiment scores and latent topics.
It proposes using relation networks to detect suicidal ideation and mental disorders with related risk indicators.
arXiv Detail & Related papers (2020-04-16T11:18:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.