Event Camera Calibration of Per-pixel Biased Contrast Threshold
- URL: http://arxiv.org/abs/2012.09378v1
- Date: Thu, 17 Dec 2020 03:16:13 GMT
- Title: Event Camera Calibration of Per-pixel Biased Contrast Threshold
- Authors: Ziwei Wang, Yonhon Ng, Pieter van Goor, Robert Mahony
- Abstract summary: Event cameras output asynchronous events to represent intensity changes with a high temporal resolution.
Currently, most of the existing works use a single contrast threshold to estimate the intensity change of all pixels.
We propose a new event camera model and two calibration approaches which cover event-only cameras and hybrid image-event cameras.
- Score: 11.252139579961883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event cameras output asynchronous events to represent intensity changes with
a high temporal resolution, even under extreme lighting conditions. Currently,
most of the existing works use a single contrast threshold to estimate the
intensity change of all pixels. However, complex circuit bias and manufacturing
imperfections cause biased pixels and mismatch contrast threshold among pixels,
which may lead to undesirable outputs. In this paper, we propose a new event
camera model and two calibration approaches which cover event-only cameras and
hybrid image-event cameras. When intensity images are simultaneously provided
along with events, we also propose an efficient online method to calibrate
event cameras that adapts to time-varying event rates. We demonstrate the
advantages of our proposed methods compared to the state-of-the-art on several
different event camera datasets.
Related papers
- EF-3DGS: Event-Aided Free-Trajectory 3D Gaussian Splatting [76.02450110026747]
Event cameras, inspired by biological vision, record pixel-wise intensity changes asynchronously with high temporal resolution.
We propose Event-Aided Free-Trajectory 3DGS, which seamlessly integrates the advantages of event cameras into 3DGS.
We evaluate our method on the public Tanks and Temples benchmark and a newly collected real-world dataset, RealEv-DAVIS.
arXiv Detail & Related papers (2024-10-20T13:44:24Z) - Deblur e-NeRF: NeRF from Motion-Blurred Events under High-speed or Low-light Conditions [56.84882059011291]
We propose Deblur e-NeRF, a novel method to reconstruct blur-minimal NeRFs from motion-red events.
We also introduce a novel threshold-normalized total variation loss to improve the regularization of large textureless patches.
arXiv Detail & Related papers (2024-09-26T15:57:20Z) - Gradient events: improved acquisition of visual information in event cameras [0.0]
We propose a new type of event, the gradient event, which benefits from the same properties as a conventional brightness event.
We show that the gradient event -based video reconstruction outperforms existing state-of-the-art brightness event -based methods by a significant margin.
arXiv Detail & Related papers (2024-09-03T10:18:35Z) - EventAid: Benchmarking Event-aided Image/Video Enhancement Algorithms
with Real-captured Hybrid Dataset [55.12137324648253]
Event cameras are emerging imaging technology that offers advantages over conventional frame-based imaging sensors in dynamic range and sensing speed.
This paper focuses on five event-aided image and video enhancement tasks.
arXiv Detail & Related papers (2023-12-13T15:42:04Z) - E-Calib: A Fast, Robust and Accurate Calibration Toolbox for Event Cameras [18.54225086007182]
We present E-Calib, a novel, fast, robust, and accurate calibration toolbox for event cameras.
The proposed method is tested in a variety of rigorous experiments for different event camera models.
arXiv Detail & Related papers (2023-06-15T12:16:38Z) - Event-based Image Deblurring with Dynamic Motion Awareness [10.81953574179206]
We introduce the first dataset containing pairs of real RGB blur images and related events during the exposure time.
Our results show better robustness overall when using events, with improvements in PSNR by up to 1.57dB on synthetic data and 1.08 dB on real event data.
arXiv Detail & Related papers (2022-08-24T09:39:55Z) - Globally-Optimal Contrast Maximisation for Event Cameras [30.79931004393174]
Event cameras are bio-inspired sensors that perform well in challenging illumination with high temporal resolution.
The pixels of an event camera operate independently and asynchronously.
The flow of events is modelled by a general homographic warping in a space-time volume.
arXiv Detail & Related papers (2022-06-10T14:06:46Z) - Globally-Optimal Event Camera Motion Estimation [30.79931004393174]
Event cameras are bio-inspired sensors that perform well in HDR conditions and have high temporal resolution.
Event cameras measure asynchronous pixel-level changes and return them in a highly discretised format.
arXiv Detail & Related papers (2022-03-08T08:24:22Z) - MEFNet: Multi-scale Event Fusion Network for Motion Deblurring [62.60878284671317]
Traditional frame-based cameras inevitably suffer from motion blur due to long exposure times.
As a kind of bio-inspired camera, the event camera records the intensity changes in an asynchronous way with high temporal resolution.
In this paper, we rethink the event-based image deblurring problem and unfold it into an end-to-end two-stage image restoration network.
arXiv Detail & Related papers (2021-11-30T23:18:35Z) - Bridging the Gap between Events and Frames through Unsupervised Domain
Adaptation [57.22705137545853]
We propose a task transfer method that allows models to be trained directly with labeled images and unlabeled event data.
We leverage the generative event model to split event features into content and motion features.
Our approach unlocks the vast amount of existing image datasets for the training of event-based neural networks.
arXiv Detail & Related papers (2021-09-06T17:31:37Z) - How to Calibrate Your Event Camera [58.80418612800161]
We propose a generic event camera calibration framework using image reconstruction.
We show that neural-network-based image reconstruction is well suited for the task of intrinsic and extrinsic calibration of event cameras.
arXiv Detail & Related papers (2021-05-26T07:06:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.