MAGNet: Multi-agent Graph Network for Deep Multi-agent Reinforcement
Learning
- URL: http://arxiv.org/abs/2012.09762v1
- Date: Thu, 17 Dec 2020 17:19:36 GMT
- Title: MAGNet: Multi-agent Graph Network for Deep Multi-agent Reinforcement
Learning
- Authors: Aleksandra Malysheva, Daniel Kudenko, Aleksei Shpilman
- Abstract summary: We propose a novel approach, called MAGnet, to multi-agent reinforcement learning.
We show that it significantly outperforms state-of-the-art MARL solutions.
- Score: 70.540936204654
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over recent years, deep reinforcement learning has shown strong successes in
complex single-agent tasks, and more recently this approach has also been
applied to multi-agent domains. In this paper, we propose a novel approach,
called MAGNet, to multi-agent reinforcement learning that utilizes a relevance
graph representation of the environment obtained by a self-attention mechanism,
and a message-generation technique. We applied our MAGnet approach to the
synthetic predator-prey multi-agent environment and the Pommerman game and the
results show that it significantly outperforms state-of-the-art MARL solutions,
including Multi-agent Deep Q-Networks (MADQN), Multi-agent Deep Deterministic
Policy Gradient (MADDPG), and QMIX
Related papers
- MADiff: Offline Multi-agent Learning with Diffusion Models [79.18130544233794]
Diffusion model (DM) recently achieved huge success in various scenarios including offline reinforcement learning.
We propose MADiff, a novel generative multi-agent learning framework to tackle this problem.
Our experiments show the superior performance of MADiff compared to baseline algorithms in a wide range of multi-agent learning tasks.
arXiv Detail & Related papers (2023-05-27T02:14:09Z) - Partially Observable Mean Field Multi-Agent Reinforcement Learning Based on Graph-Attention [12.588866091856309]
This paper considers partially observable multi-agent reinforcement learning (MARL), where each agent can only observe other agents within a fixed range.
We propose a novel multi-agent reinforcement learning algorithm, Partially Observable Mean Field Multi-Agent Reinforcement Learning based on Graph-Attention (GAMFQ)
Experiments show that GAMFQ outperforms baselines including the state-of-the-art partially observable mean-field reinforcement learning algorithms.
arXiv Detail & Related papers (2023-04-25T08:38:32Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
offline multi-agent reinforcement learning (MARL) aims to learn effective multi-agent policies from pre-collected datasets.
One agent learned by offline MARL often inherits this random policy, jeopardizing the performance of the entire team.
We propose a novel framework called Shared Individual Trajectories (SIT) to address this problem.
arXiv Detail & Related papers (2022-11-28T18:11:26Z) - Off-Policy Correction For Multi-Agent Reinforcement Learning [9.599347559588216]
Multi-agent reinforcement learning (MARL) provides a framework for problems involving multiple interacting agents.
Despite apparent similarity to the single-agent case, multi-agent problems are often harder to train and analyze theoretically.
We propose MA-Trace, a new on-policy actor-critic algorithm, which extends V-Trace to the MARL setting.
arXiv Detail & Related papers (2021-11-22T14:23:13Z) - Towards Multi-Agent Reinforcement Learning using Quantum Boltzmann
Machines [2.015864965523243]
We propose an extension to the original concept in order to solve more challenging problems.
We add an experience replay buffer and use different networks for approximating the target and policy values.
Quantum sampling proves to be a promising method for reinforcement learning tasks, but is currently limited by the QPU size.
arXiv Detail & Related papers (2021-09-22T17:59:24Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Many Agent Reinforcement Learning Under Partial Observability [10.11960004698409]
We show that our instantiations can learn the optimal behavior in a broader class of agent networks than the mean-field method.
We show that our instantiations can learn the optimal behavior in a broader class of agent networks than the mean-field method.
arXiv Detail & Related papers (2021-06-17T21:24:29Z) - MS*: A New Exact Algorithm for Multi-agent Simultaneous Multi-goal
Sequencing and Path Finding [10.354181009277623]
In multi-agent applications such as surveillance and logistics, fleets of mobile agents are often expected to coordinate and safely visit a large number of goal locations.
In this article, we introduce a new algorithm called MS* which computes an optimal solution for this multi-agent problem.
Numerical results show that our new algorithm can solve the multi-agent problem with 20 agents and 50 goals in a minute of CPU time on a standard laptop.
arXiv Detail & Related papers (2021-03-18T01:57:35Z) - FACMAC: Factored Multi-Agent Centralised Policy Gradients [103.30380537282517]
We propose FACtored Multi-Agent Centralised policy gradients (FACMAC)
It is a new method for cooperative multi-agent reinforcement learning in both discrete and continuous action spaces.
We evaluate FACMAC on variants of the multi-agent particle environments, a novel multi-agent MuJoCo benchmark, and a challenging set of StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2020-03-14T21:29:09Z) - Scalable Multi-Agent Inverse Reinforcement Learning via
Actor-Attention-Critic [54.2180984002807]
Multi-agent adversarial inverse reinforcement learning (MA-AIRL) is a recent approach that applies single-agent AIRL to multi-agent problems.
We propose a multi-agent inverse RL algorithm that is more sample-efficient and scalable than previous works.
arXiv Detail & Related papers (2020-02-24T20:30:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.