FantastIC4: A Hardware-Software Co-Design Approach for Efficiently
Running 4bit-Compact Multilayer Perceptrons
- URL: http://arxiv.org/abs/2012.11331v1
- Date: Thu, 17 Dec 2020 19:10:04 GMT
- Title: FantastIC4: A Hardware-Software Co-Design Approach for Efficiently
Running 4bit-Compact Multilayer Perceptrons
- Authors: Simon Wiedemann, Suhas Shivapakash, Pablo Wiedemann, Daniel Becking,
Wojciech Samek, Friedel Gerfers, Thomas Wiegand
- Abstract summary: We propose a software-hardware optimization paradigm for obtaining a highly efficient execution engine of deep neural networks (DNNs)
Our approach is centred around compression as a means for reducing the area as well as power requirements of, concretely, multilayer perceptrons (MLPs) with high predictive performances.
We show that we can achieve throughputs of 2.45 TOPS with a total power consumption of 3.6W on a Virtual Ultrascale FPGA XCVU440 device implementation, and achieve a total power efficiency of 20.17 TOPS/W on a 22nm process ASIC version.
- Score: 19.411734658680967
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the growing demand for deploying deep learning models to the "edge", it
is paramount to develop techniques that allow to execute state-of-the-art
models within very tight and limited resource constraints. In this work we
propose a software-hardware optimization paradigm for obtaining a highly
efficient execution engine of deep neural networks (DNNs) that are based on
fully-connected layers. Our approach is centred around compression as a means
for reducing the area as well as power requirements of, concretely, multilayer
perceptrons (MLPs) with high predictive performances. Firstly, we design a
novel hardware architecture named FantastIC4, which (1) supports the efficient
on-chip execution of multiple compact representations of fully-connected layers
and (2) minimizes the required number of multipliers for inference down to only
4 (thus the name). Moreover, in order to make the models amenable for efficient
execution on FantastIC4, we introduce a novel entropy-constrained training
method that renders them to be robust to 4bit quantization and highly
compressible in size simultaneously. The experimental results show that we can
achieve throughputs of 2.45 TOPS with a total power consumption of 3.6W on a
Virtual Ultrascale FPGA XCVU440 device implementation, and achieve a total
power efficiency of 20.17 TOPS/W on a 22nm process ASIC version. When compared
to the other state-of-the-art accelerators designed for the Google Speech
Command (GSC) dataset, FantastIC4 is better by 51$\times$ in terms of
throughput and 145$\times$ in terms of area efficiency (GOPS/W).
Related papers
- FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - COMET: Towards Partical W4A4KV4 LLMs Serving [37.30529940231099]
Quantization is a compression technology to reduce the overhead of serving large language models (LLMs) on terminal devices and in cloud data centers.
We propose a novel mixed-precision quantization algorithm (FMPQ) that compresses most activations into 4-bit with negligible accuracy loss.
We integrate the optimized W4Ax kernel into our inference framework, COMET, and provide efficient management to support popular LLMs.
arXiv Detail & Related papers (2024-10-16T02:16:53Z) - Hardware-Software Co-optimised Fast and Accurate Deep Reconfigurable Spiking Inference Accelerator Architecture Design Methodology [2.968768532937366]
Spiking Neural Networks (SNNs) have emerged as a promising approach to improve the energy efficiency of machine learning models.
We develop a hardware-software co-optimisation strategy to port software-trained deep neural networks (DNN) to reduced-precision spiking models.
arXiv Detail & Related papers (2024-10-07T05:04:13Z) - QUIK: Towards End-to-End 4-Bit Inference on Generative Large Language
Models [57.04178959678024]
We show that the majority of inference computations for large generative models can be performed with both weights and activations being cast to 4 bits.
We achieve this via a hybrid quantization strategy called QUIK, which compresses most of the weights and activations to 4-bit.
We provide GPU kernels matching the QUIK format with highly-efficient layer-wise runtimes, which lead to practical end-to-end throughput improvements of up to 3.4x.
arXiv Detail & Related papers (2023-10-13T17:15:05Z) - EfficientDM: Efficient Quantization-Aware Fine-Tuning of Low-Bit Diffusion Models [21.17675493267517]
Post-training quantization (PTQ) and quantization-aware training (QAT) are two main approaches to compress and accelerate diffusion models.
We introduce a data-free and parameter-efficient fine-tuning framework for low-bit diffusion models, dubbed EfficientDM, to achieve QAT-level performance with PTQ-like efficiency.
Our method significantly outperforms previous PTQ-based diffusion models while maintaining similar time and data efficiency.
arXiv Detail & Related papers (2023-10-05T02:51:53Z) - REED: Chiplet-Based Accelerator for Fully Homomorphic Encryption [4.713756093611972]
We present the first-of-its-kind multi-chiplet-based FHE accelerator REED' for overcoming the limitations of prior monolithic designs.
Results demonstrate that REED 2.5D microprocessor consumes 96.7 mm$2$ chip area, 49.4 W average power in 7nm technology.
arXiv Detail & Related papers (2023-08-05T14:04:39Z) - Edge-MoE: Memory-Efficient Multi-Task Vision Transformer Architecture
with Task-level Sparsity via Mixture-of-Experts [60.1586169973792]
M$3$ViT is the latest multi-task ViT model that introduces mixture-of-experts (MoE)
MoE achieves better accuracy and over 80% reduction computation but leaves challenges for efficient deployment on FPGA.
Our work, dubbed Edge-MoE, solves the challenges to introduce the first end-to-end FPGA accelerator for multi-task ViT with a collection of architectural innovations.
arXiv Detail & Related papers (2023-05-30T02:24:03Z) - Adaptable Butterfly Accelerator for Attention-based NNs via Hardware and
Algorithm Co-design [66.39546326221176]
Attention-based neural networks have become pervasive in many AI tasks.
The use of the attention mechanism and feed-forward network (FFN) demands excessive computational and memory resources.
This paper proposes a hardware-friendly variant that adopts a unified butterfly sparsity pattern to approximate both the attention mechanism and the FFNs.
arXiv Detail & Related papers (2022-09-20T09:28:26Z) - An Algorithm-Hardware Co-Optimized Framework for Accelerating N:M Sparse
Transformers [11.811907838840712]
We propose an algorithm-hardware co-optimized framework to flexibly and efficiently accelerate Transformers by utilizing general N:M sparsity patterns.
We present a flexible and efficient hardware architecture, namely STA, to achieve significant speedup when deploying N:M sparse Transformers.
Experimental results show that compared to other methods, N:M sparse Transformers, generated using IDP, achieves an average of 6.7% improvement on accuracy with high training efficiency.
arXiv Detail & Related papers (2022-08-12T04:51:49Z) - EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense
Prediction [67.11722682878722]
This work presents EfficientViT, a new family of high-resolution vision models with novel multi-scale linear attention.
Our multi-scale linear attention achieves the global receptive field and multi-scale learning.
EfficientViT delivers remarkable performance gains over previous state-of-the-art models.
arXiv Detail & Related papers (2022-05-29T20:07:23Z) - SmartExchange: Trading Higher-cost Memory Storage/Access for Lower-cost
Computation [97.78417228445883]
We present SmartExchange, an algorithm- hardware co-design framework for energy-efficient inference of deep neural networks (DNNs)
We develop a novel algorithm to enforce a specially favorable DNN weight structure, where each layerwise weight matrix can be stored as the product of a small basis matrix and a large sparse coefficient matrix whose non-zero elements are all power-of-2.
We further design a dedicated accelerator to fully utilize the SmartExchange-enforced weights to improve both energy efficiency and latency performance.
arXiv Detail & Related papers (2020-05-07T12:12:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.