Projected Stochastic Gradient Langevin Algorithms for Constrained
Sampling and Non-Convex Learning
- URL: http://arxiv.org/abs/2012.12137v1
- Date: Tue, 22 Dec 2020 16:19:20 GMT
- Title: Projected Stochastic Gradient Langevin Algorithms for Constrained
Sampling and Non-Convex Learning
- Authors: Andrew Lamperski
- Abstract summary: Langevin algorithms are methods with additive noise.
Langevin algorithms have been used for decades in chain Carlo (Milon)
For learning, we show that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that it is that
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Langevin algorithms are gradient descent methods with additive noise. They
have been used for decades in Markov chain Monte Carlo (MCMC) sampling,
optimization, and learning. Their convergence properties for unconstrained
non-convex optimization and learning problems have been studied widely in the
last few years. Other work has examined projected Langevin algorithms for
sampling from log-concave distributions restricted to convex compact sets. For
learning and optimization, log-concave distributions correspond to convex
losses. In this paper, we analyze the case of non-convex losses with compact
convex constraint sets and IID external data variables. We term the resulting
method the projected stochastic gradient Langevin algorithm (PSGLA). We show
the algorithm achieves a deviation of $O(T^{-1/4}(\log T)^{1/2})$ from its
target distribution in 1-Wasserstein distance. For optimization and learning,
we show that the algorithm achieves $\epsilon$-suboptimal solutions, on
average, provided that it is run for a time that is polynomial in
$\epsilon^{-1}$ and slightly super-exponential in the problem dimension.
Related papers
- Faster Sampling via Stochastic Gradient Proximal Sampler [28.422547264326468]
Proximal samplers (SPS) for sampling from non-log-concave distributions are studied.
We show that the convergence to the target distribution can be guaranteed as long as the algorithm trajectory is bounded.
We provide two implementable variants based on Langevin dynamics (SGLD) and Langevin-MALA, giving rise to SPS-SGLD and SPS-MALA.
arXiv Detail & Related papers (2024-05-27T00:53:18Z) - Robust Sparse Mean Estimation via Sum of Squares [42.526664955704746]
We study the problem of high-dimensional sparse mean estimation in the presence of an $epsilon$-fraction of adversarial outliers.
Our algorithms follow the Sum-of-Squares based, to algorithms approach.
arXiv Detail & Related papers (2022-06-07T16:49:54Z) - Accelerated first-order methods for convex optimization with locally
Lipschitz continuous gradient [0.0]
We first consider unconstrained convex optimization with Lipschitz continuous gradient (LLCG) and propose accelerated proximal gradient (APG) methods for solving it.
The proposed APG methods are equipped with a verifiable termination criterion and enjoy an operation complexity of $cal O(varepsilon-1/2log varepsilon-1)$.
Preliminary numerical results are presented to demonstrate the performance of our proposed methods.
arXiv Detail & Related papers (2022-06-02T10:34:26Z) - Constrained Langevin Algorithms with L-mixing External Random Variables [0.0]
Langevin sampling algorithms are augmented with additive noise.
Non-symotic analysis of Langevin algorithms for learning has been extensively explored.
We show that Langevin algorithm achieves a deviation of 22 points.
arXiv Detail & Related papers (2022-05-27T18:44:35Z) - Improved Convergence Rate of Stochastic Gradient Langevin Dynamics with
Variance Reduction and its Application to Optimization [50.83356836818667]
gradient Langevin Dynamics is one of the most fundamental algorithms to solve non-eps optimization problems.
In this paper, we show two variants of this kind, namely the Variance Reduced Langevin Dynamics and the Recursive Gradient Langevin Dynamics.
arXiv Detail & Related papers (2022-03-30T11:39:00Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
This work provides a general framework for the non-asymotic analysis of sampling error in 2-Wasserstein distance.
Our theoretical analysis is further validated by numerical experiments.
arXiv Detail & Related papers (2021-09-08T18:00:05Z) - Faster Convergence of Stochastic Gradient Langevin Dynamics for
Non-Log-Concave Sampling [110.88857917726276]
We provide a new convergence analysis of gradient Langevin dynamics (SGLD) for sampling from a class of distributions that can be non-log-concave.
At the core of our approach is a novel conductance analysis of SGLD using an auxiliary time-reversible Markov Chain.
arXiv Detail & Related papers (2020-10-19T15:23:18Z) - Gradient Free Minimax Optimization: Variance Reduction and Faster
Convergence [120.9336529957224]
In this paper, we denote the non-strongly setting on the magnitude of a gradient-free minimax optimization problem.
We show that a novel zeroth-order variance reduced descent algorithm achieves the best known query complexity.
arXiv Detail & Related papers (2020-06-16T17:55:46Z) - Learning Halfspaces with Tsybakov Noise [50.659479930171585]
We study the learnability of halfspaces in the presence of Tsybakov noise.
We give an algorithm that achieves misclassification error $epsilon$ with respect to the true halfspace.
arXiv Detail & Related papers (2020-06-11T14:25:02Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
We study the problem of minimizing the population loss given i.i.d. samples from a distribution over convex loss functions.
A recent work of Bassily et al. has established the optimal bound on the excess population loss achievable given $n$ samples.
We describe two new techniques for deriving convex optimization algorithms both achieving the optimal bound on excess loss and using $O(minn, n2/d)$ gradient computations.
arXiv Detail & Related papers (2020-05-10T19:52:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.