Assured RL: Reinforcement Learning with Almost Sure Constraints
- URL: http://arxiv.org/abs/2012.13036v1
- Date: Thu, 24 Dec 2020 00:29:28 GMT
- Title: Assured RL: Reinforcement Learning with Almost Sure Constraints
- Authors: Agustin Castellano and Juan Bazerque and Enrique Mallada
- Abstract summary: We consider the problem of finding optimal policies for a Markov Decision Process with almost sure constraints on state transitions and action triplets.
We define value and action-value functions that satisfy a barrier-based decomposition.
We develop a Barrier-learning algorithm, based on Q-Learning, that identifies such unsafe state-action pairs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of finding optimal policies for a Markov Decision
Process with almost sure constraints on state transitions and action triplets.
We define value and action-value functions that satisfy a barrier-based
decomposition which allows for the identification of feasible policies
independently of the reward process. We prove that, given a policy {\pi},
certifying whether certain state-action pairs lead to feasible trajectories
under {\pi} is equivalent to solving an auxiliary problem aimed at finding the
probability of performing an unfeasible transition. Using this
interpretation,we develop a Barrier-learning algorithm, based on Q-Learning,
that identifies such unsafe state-action pairs. Our analysis motivates the need
to enhance the Reinforcement Learning (RL) framework with an additional signal,
besides rewards, called here damage function that provides feasibility
information and enables the solution of RL problems with model-free
constraints. Moreover, our Barrier-learning algorithm wraps around existing RL
algorithms, such as Q-Learning and SARSA, giving them the ability to solve
almost-surely constrained problems.
Related papers
- Probabilistic Satisfaction of Temporal Logic Constraints in Reinforcement Learning via Adaptive Policy-Switching [0.0]
Constrained Reinforcement Learning (CRL) is a subset of machine learning that introduces constraints into the traditional reinforcement learning (RL) framework.
We propose a novel framework that relies on switching between pure learning (reward) and constraint satisfaction.
arXiv Detail & Related papers (2024-10-10T15:19:45Z) - Zero-Sum Positional Differential Games as a Framework for Robust Reinforcement Learning: Deep Q-Learning Approach [2.3020018305241337]
This paper is the first to propose considering the RRL problems within the positional differential game theory.
Namely, we prove that under Isaacs's condition, the same Q-function can be utilized as an approximate solution of both minimax and maximin Bellman equations.
We present the Isaacs Deep Q-Network algorithms and demonstrate their superiority compared to other baseline RRL and Multi-Agent RL algorithms in various environments.
arXiv Detail & Related papers (2024-05-03T12:21:43Z) - Online Safety Property Collection and Refinement for Safe Deep
Reinforcement Learning in Mapless Navigation [79.89605349842569]
We introduce the Collection and Refinement of Online Properties (CROP) framework to design properties at training time.
CROP employs a cost signal to identify unsafe interactions and use them to shape safety properties.
We evaluate our approach in several robotic mapless navigation tasks and demonstrate that the violation metric computed with CROP allows higher returns and lower violations over previous Safe DRL approaches.
arXiv Detail & Related papers (2023-02-13T21:19:36Z) - Offline Minimax Soft-Q-learning Under Realizability and Partial Coverage [100.8180383245813]
We propose value-based algorithms for offline reinforcement learning (RL)
We show an analogous result for vanilla Q-functions under a soft margin condition.
Our algorithms' loss functions arise from casting the estimation problems as nonlinear convex optimization problems and Lagrangifying.
arXiv Detail & Related papers (2023-02-05T14:22:41Z) - Reinforcement Learning with Stepwise Fairness Constraints [50.538878453547966]
We introduce the study of reinforcement learning with stepwise fairness constraints.
We provide learning algorithms with strong theoretical guarantees in regard to policy optimality and fairness violation.
arXiv Detail & Related papers (2022-11-08T04:06:23Z) - Instance-Dependent Confidence and Early Stopping for Reinforcement
Learning [99.57168572237421]
Various algorithms for reinforcement learning (RL) exhibit dramatic variation in their convergence rates as a function of problem structure.
This research provides guarantees that explain textitex post the performance differences observed.
A natural next step is to convert these theoretical guarantees into guidelines that are useful in practice.
arXiv Detail & Related papers (2022-01-21T04:25:35Z) - Constraints Penalized Q-Learning for Safe Offline Reinforcement Learning [15.841609263723575]
We study the problem of safe offline reinforcement learning (RL)
The goal is to learn a policy that maximizes long-term reward while satisfying safety constraints given only offline data, without further interaction with the environment.
We show that na"ive approaches that combine techniques from safe RL and offline RL can only learn sub-optimal solutions.
arXiv Detail & Related papers (2021-07-19T16:30:14Z) - Constrained Model-Free Reinforcement Learning for Process Optimization [0.0]
Reinforcement learning (RL) is a control approach that can handle nonlinear optimal control problems.
Despite the promise exhibited, RL has yet to see marked translation to industrial practice.
We propose an 'oracle'-assisted constrained Q-learning algorithm that guarantees the satisfaction of joint chance constraints with a high probability.
arXiv Detail & Related papers (2020-11-16T13:16:22Z) - Constrained Markov Decision Processes via Backward Value Functions [43.649330976089004]
We model the problem of learning with constraints as a Constrained Markov Decision Process.
A key contribution of our approach is to translate cumulative cost constraints into state-based constraints.
We provide theoretical guarantees under which the agent converges while ensuring safety over the course of training.
arXiv Detail & Related papers (2020-08-26T20:56:16Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
We present SUNRISE, a simple unified ensemble method, which is compatible with various off-policy deep reinforcement learning algorithms.
SUNRISE integrates two key ingredients: (a) ensemble-based weighted Bellman backups, which re-weight target Q-values based on uncertainty estimates from a Q-ensemble, and (b) an inference method that selects actions using the highest upper-confidence bounds for efficient exploration.
arXiv Detail & Related papers (2020-07-09T17:08:44Z) - Strictly Batch Imitation Learning by Energy-based Distribution Matching [104.33286163090179]
Consider learning a policy purely on the basis of demonstrated behavior -- that is, with no access to reinforcement signals, no knowledge of transition dynamics, and no further interaction with the environment.
One solution is simply to retrofit existing algorithms for apprenticeship learning to work in the offline setting.
But such an approach leans heavily on off-policy evaluation or offline model estimation, and can be indirect and inefficient.
We argue that a good solution should be able to explicitly parameterize a policy, implicitly learn from rollout dynamics, and operate in an entirely offline fashion.
arXiv Detail & Related papers (2020-06-25T03:27:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.