Identifying Training Stop Point with Noisy Labeled Data
- URL: http://arxiv.org/abs/2012.13435v1
- Date: Thu, 24 Dec 2020 20:07:30 GMT
- Title: Identifying Training Stop Point with Noisy Labeled Data
- Authors: Sree Ram Kamabattula, Venkat Devarajan, Babak Namazi, Ganesh
Sankaranarayanan
- Abstract summary: We develop an algorithm to find a training stop point (TSP) at or close to test accuracy (MOTA)
We validated the robustness of our algorithm (AutoTSP) through several experiments on CIFAR-10, CIFAR-100, and a real-world noisy dataset.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training deep neural networks (DNNs) with noisy labels is a challenging
problem due to over-parameterization. DNNs tend to essentially fit on clean
samples at a higher rate in the initial stages, and later fit on the noisy
samples at a relatively lower rate. Thus, with a noisy dataset, the test
accuracy increases initially and drops in the later stages. To find an early
stopping point at the maximum obtainable test accuracy (MOTA), recent studies
assume either that i) a clean validation set is available or ii) the noise
ratio is known, or, both. However, often a clean validation set is unavailable,
and the noise estimation can be inaccurate. To overcome these issues, we
provide a novel training solution, free of these conditions. We analyze the
rate of change of the training accuracy for different noise ratios under
different conditions to identify a training stop region. We further develop a
heuristic algorithm based on a small-learning assumption to find a training
stop point (TSP) at or close to MOTA. To the best of our knowledge, our method
is the first to rely solely on the \textit{training behavior}, while utilizing
the entire training set, to automatically find a TSP. We validated the
robustness of our algorithm (AutoTSP) through several experiments on CIFAR-10,
CIFAR-100, and a real-world noisy dataset for different noise ratios, noise
types and architectures.
Related papers
- SoftPatch: Unsupervised Anomaly Detection with Noisy Data [67.38948127630644]
This paper considers label-level noise in image sensory anomaly detection for the first time.
We propose a memory-based unsupervised AD method, SoftPatch, which efficiently denoises the data at the patch level.
Compared with existing methods, SoftPatch maintains a strong modeling ability of normal data and alleviates the overconfidence problem in coreset.
arXiv Detail & Related papers (2024-03-21T08:49:34Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
This paper aims to understand the nature of noise in pre-training datasets and to mitigate its impact on downstream tasks.
We propose a light-weight black-box tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise.
arXiv Detail & Related papers (2023-09-29T06:18:15Z) - Instance-dependent Noisy-label Learning with Graphical Model Based Noise-rate Estimation [16.283722126438125]
Label Noise Learning (LNL) incorporates a sample selection stage to differentiate clean and noisy-label samples.
Such curriculum is sub-optimal since it does not consider the actual label noise rate in the training set.
This paper addresses this issue with a new noise-rate estimation method that is easily integrated with most state-of-the-art (SOTA) LNL methods.
arXiv Detail & Related papers (2023-05-31T01:46:14Z) - Latent Class-Conditional Noise Model [54.56899309997246]
We introduce a Latent Class-Conditional Noise model (LCCN) to parameterize the noise transition under a Bayesian framework.
We then deduce a dynamic label regression method for LCCN, whose Gibbs sampler allows us efficiently infer the latent true labels.
Our approach safeguards the stable update of the noise transition, which avoids previous arbitrarily tuning from a mini-batch of samples.
arXiv Detail & Related papers (2023-02-19T15:24:37Z) - Robust Training under Label Noise by Over-parameterization [41.03008228953627]
We propose a principled approach for robust training of over-parameterized deep networks in classification tasks where a proportion of training labels are corrupted.
The main idea is yet very simple: label noise is sparse and incoherent with the network learned from clean data, so we model the noise and learn to separate it from the data.
Remarkably, when trained using such a simple method in practice, we demonstrate state-of-the-art test accuracy against label noise on a variety of real datasets.
arXiv Detail & Related papers (2022-02-28T18:50:10Z) - Synergistic Network Learning and Label Correction for Noise-robust Image
Classification [28.27739181560233]
Deep Neural Networks (DNNs) tend to overfit training label noise, resulting in poorer model performance in practice.
We propose a robust label correction framework combining the ideas of small loss selection and noise correction.
We demonstrate our method on both synthetic and real-world datasets with different noise types and rates.
arXiv Detail & Related papers (2022-02-27T23:06:31Z) - Denoising Distantly Supervised Named Entity Recognition via a
Hypergeometric Probabilistic Model [26.76830553508229]
Hypergeometric Learning (HGL) is a denoising algorithm for distantly supervised named entity recognition.
HGL takes both noise distribution and instance-level confidence into consideration.
Experiments show that HGL can effectively denoise the weakly-labeled data retrieved from distant supervision.
arXiv Detail & Related papers (2021-06-17T04:01:25Z) - Learning from Noisy Labels via Dynamic Loss Thresholding [69.61904305229446]
We propose a novel method named Dynamic Loss Thresholding (DLT)
During the training process, DLT records the loss value of each sample and calculates dynamic loss thresholds.
Experiments on CIFAR-10/100 and Clothing1M demonstrate substantial improvements over recent state-of-the-art methods.
arXiv Detail & Related papers (2021-04-01T07:59:03Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.