POPO: Pessimistic Offline Policy Optimization
- URL: http://arxiv.org/abs/2012.13682v2
- Date: Mon, 4 Jan 2021 03:43:14 GMT
- Title: POPO: Pessimistic Offline Policy Optimization
- Authors: Qiang He, Xinwen Hou
- Abstract summary: We study why off-policy RL methods fail to learn in offline setting from the value function view.
We propose Pessimistic Offline Policy Optimization (POPO), which learns a pessimistic value function to get a strong policy.
We find that POPO performs surprisingly well and scales to tasks with high-dimensional state and action space.
- Score: 6.122342691982727
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Offline reinforcement learning (RL), also known as batch RL, aims to optimize
policy from a large pre-recorded dataset without interaction with the
environment. This setting offers the promise of utilizing diverse,
pre-collected datasets to obtain policies without costly, risky, active
exploration. However, commonly used off-policy algorithms based on Q-learning
or actor-critic perform poorly when learning from a static dataset. In this
work, we study why off-policy RL methods fail to learn in offline setting from
the value function view, and we propose a novel offline RL algorithm that we
call Pessimistic Offline Policy Optimization (POPO), which learns a pessimistic
value function to get a strong policy. We find that POPO performs surprisingly
well and scales to tasks with high-dimensional state and action space,
comparing or outperforming several state-of-the-art offline RL algorithms on
benchmark tasks.
Related papers
- Offline-Boosted Actor-Critic: Adaptively Blending Optimal Historical Behaviors in Deep Off-Policy RL [42.57662196581823]
Off-policy reinforcement learning (RL) has achieved notable success in tackling many complex real-world tasks.
Most existing off-policy RL algorithms fail to maximally exploit the information in the replay buffer.
We present Offline-Boosted Actor-Critic (OBAC), a model-free online RL framework that elegantly identifies the outperforming offline policy.
arXiv Detail & Related papers (2024-05-28T18:38:46Z) - Planning to Go Out-of-Distribution in Offline-to-Online Reinforcement Learning [9.341618348621662]
We aim to find the best-performing policy within a limited budget of online interactions.
We first study the major online RL exploration methods based on intrinsic rewards and UCB.
We then introduce an algorithm for planning to go out-of-distribution that avoids these issues.
arXiv Detail & Related papers (2023-10-09T13:47:05Z) - Beyond Uniform Sampling: Offline Reinforcement Learning with Imbalanced
Datasets [53.8218145723718]
offline policy learning is aimed at learning decision-making policies using existing datasets of trajectories without collecting additional data.
We argue that when a dataset is dominated by suboptimal trajectories, state-of-the-art offline RL algorithms do not substantially improve over the average return of trajectories in the dataset.
We present a realization of the sampling strategy and an algorithm that can be used as a plug-and-play module in standard offline RL algorithms.
arXiv Detail & Related papers (2023-10-06T17:58:14Z) - Behavior Proximal Policy Optimization [14.701955559885615]
offline reinforcement learning (RL) is a challenging setting where existing off-policy actor-critic methods perform poorly.
Online on-policy algorithms are naturally able to solve offline RL.
We propose Behavior Proximal Policy Optimization (BPPO), which solves offline RL without any extra constraint or regularization.
arXiv Detail & Related papers (2023-02-22T11:49:12Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Curriculum Offline Imitation Learning [72.1015201041391]
offline reinforcement learning tasks require the agent to learn from a pre-collected dataset with no further interactions with the environment.
We propose textitCurriculum Offline Learning (COIL), which utilizes an experience picking strategy for imitating from adaptive neighboring policies with a higher return.
On continuous control benchmarks, we compare COIL against both imitation-based and RL-based methods, showing that it not only avoids just learning a mediocre behavior on mixed datasets but is also even competitive with state-of-the-art offline RL methods.
arXiv Detail & Related papers (2021-11-03T08:02:48Z) - OptiDICE: Offline Policy Optimization via Stationary Distribution
Correction Estimation [59.469401906712555]
We present an offline reinforcement learning algorithm that prevents overestimation in a more principled way.
Our algorithm, OptiDICE, directly estimates the stationary distribution corrections of the optimal policy.
We show that OptiDICE performs competitively with the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-21T00:43:30Z) - Critic Regularized Regression [70.8487887738354]
We propose a novel offline RL algorithm to learn policies from data using a form of critic-regularized regression (CRR)
We find that CRR performs surprisingly well and scales to tasks with high-dimensional state and action spaces.
arXiv Detail & Related papers (2020-06-26T17:50:26Z) - MOPO: Model-based Offline Policy Optimization [183.6449600580806]
offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data.
We show that an existing model-based RL algorithm already produces significant gains in the offline setting.
We propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics.
arXiv Detail & Related papers (2020-05-27T08:46:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.